
Chapter 25
Robust Collaborative Recommendation

Robin Burke, Michael P. O’Mahony and Neil J. Hurley

Abstract Collaborative recommender systems are vulnerable to malicious users
who seek to bias their output, causing them to recommend (or not recommend)
particular items. This problem has been an active research topic since 2002. Re-
searchers have found that the most widely-studied memory-based algorithms have
significant vulnerabilities to attacks that can be fairly easily mounted. This chapter
discusses these findings and the responses that have been investigated, especially
detection of attack profiles and the implementation of robust recommendation algo-
rithms.

25.1 Introduction

Collaborative recommender systems are dependent on the goodwill of their users.
There is an implicit assumption – note the word “collaborative” – that users are in
some sense “on the same side”, and at the very least, that they will interact with
the system with the aim of getting good recommendations for themselves while
providing useful data for their neighbors. Herlocker et al. [10] use the analogy of
the “water-cooler chat”, whereby co-workers exchange tips and opinions.

However, as contemporary experience has shown, the Internet is not solely in-
habited by good-natured collaborative types. Users will have a range of purposes

Robin Burke
Center for Web Intelligence, School of Computer Science, Telecommunication and Information
Systems, DePaul University, Chicago, Illinois, USA e-mail: rburke@cs.depaul.edu

Michael P. O’Mahony
CLARITY: Centre for Sensor Web Technologies, School of Computer Science and Informatics,
University College Dublin, Ireland e-mail: michael.p.omahony@ucd.ie

Neil J. Hurley
School of Computer Science and Informatics, University College Dublin, Ireland e-mail: neil.
hurley@ucd.ie

F. Ricci et al. (eds.), Recommender Systems Handbook,
DOI 10.1007/978-0-387-85820-3_25, © Springer Science+Business Media, LLC 2011

805

806 Robin Burke, Michael P. O’Mahony and Neil J. Hurley

Fig. 25.1: Curves show the theoretical impact of attacks of different degrees of
efficiency. The shaded areas shows attacks that can be detected.

in interacting with recommender systems, and in some cases, those purposes may
be counter to those of the system owner or those of the majority of its user popula-
tion. To cite a well-known example, the Google search engine finds itself engaging
in more-or-less continual combat against those who seek to promote their sites by
“gaming” its retrieval algorithm.

In search engine spam, the goal for an attacker is to make the promoted page
“look like” a good answer to a query in all respects that Google cares about. In the
case of collaborative recommendation, the goal for an adversary is to make a par-
ticular product or item look like a good recommendation for a particular user (or
maybe all users) when really it is not. Alternatively, the attacker might seek to pre-
vent a particular product from being recommended when really it is a good choice.
If we assume that a collaborative system makes its recommendations purely on the
basis of user profiles, then it is clear what an attacker must do – add user profiles that
push the recommendation algorithm to produce the desired effect. A single profile
would rarely have this effect, and in any case, fielded systems tend to avoid making
predictions based on only a single neighbor. What an attacker really needs to do is
to create a large number of psuedonomous profiles designed to bias the system’s
predictions. Site owners try to make this relatively costly, but there is an inherent
tension between policing the input of a collaborative system and making sure that
users are not discouraged from entering the data that the algorithm needs to do its
work. The possibility of designing user rating profiles to deliberately manipulate the
recommendation output of a collaborative filtering system was first raised in [24].
Since then, research has focused on attack strategies, detection strategies to com-
bat attacks and recommendation algorithms that have inherent robustness against
attack.

A framework for understanding this research is sketched in Figure 25.1. First, we
demonstrate the extent of the problem by modeling efficient attacks, attacks that can

25 Robust Collaborative Recommendation 807

with relatively low cost produce a large impact on system output. This enables us
to understand the shape of the impact curve for efficient attacks. Research on detec-
tion attempts to identify groups of profiles that make up an attack and to eliminate
them from the database. Attacks that are not efficient are more difficult to detect,
but because they are inefficient, must be very large to have an impact. A large influx
of ratings for a particular item is easy to detect with standard system monitoring
procedures. Research on detection therefore focuses on how to detect efficient at-
tacks and variants of them, seeking to increase the size of the “detectable” boxes in
the diagram, and thereby limiting the impact that an attacker can have. At the same
time, researchers have studied a number of algorithms that are intended to be ro-
bust against attack, having lower impact curves relative to efficient attacks. With the
combination of these techniques, researchers have sought, not to eliminate attacks,
but to control their impact to the point where they are no longer cost-effective.

This chapter looks at each of these points in turn. In Section 25.3, we look at
research that aims to identify the most efficient and practical attacks against collab-
orative recommender systems, establishing the shape of the impact curve suggested
above. Section 25.5 looks at the problem of detection: in particular, the left-most
shaded area for detecting efficient attacks. Lastly, in Section 25.6, we examine at-
tempts to reduce the impact of attacks through robust algorithms.

25.2 Defining the Problem

A collaborative recommender is supposed to change its recommendations in re-
sponse to the profiles that users add. It is somewhat counter-intuitive to suppose that
“robustness” or “stability” is a desirable property in a system that is supposed to be
adaptive. The goal of robust recommendation is to prevent attackers from manip-
ulating the system through large-scale insertion of user profiles, a profile injection
attack.

We assume that any user profile is feasible. That is, we do not want to demand
that users’ ratings fit with those that have been entered previously or that they make
any kind of objective sense. Users are entitled to their idiosyncratic opinions and
there is always the possibility that what is an unusual user today may be more typi-
cal tomorrow as new users sign up. So, a profile, taken by itself, cannot constitute an
attack. Also, it is important to note that some web phenomena that look like attacks
are not considered such within this definition. For example, in the Fall of 2008, nu-
merous videogame fans converged on the page for the game Spore on Amazon.com,
using it as a vehicle for airing their complaints about the digital rights management
software included with the game. Presumably these were a large number of authen-
tic individuals, and while their ratings no doubt skewed the recommendations for
Spore for some time, their actions would not be considered an attack as we define it
here. It is not clear that any automated technique can identify when a real user posts

808 Robin Burke, Michael P. O’Mahony and Neil J. Hurley

a rating to make a political statement or as a prank, rather than to reflect an honest
preference.1

For the purposes of this research, an attack is a concerted effort to bias the results
of a recommender system by the insertion of a large number of profiles using false
identities. Each of the separate identities assumed by the attacker are referred to as
an attack profile. Once created, these profiles are used to insert preference data into
the system. The most dangerous attacks are those that are crafted for maximum im-
pact on the system, so much research has been devoted to finding the most effective
and practical attacks against different algorithms.

While random vandalism surely does occur, research in this area has concen-
trated on attacks designed to achieve a particular recommendation outcome. The
objectives of product push and product nuke attacks are to promote or demote the
recommendations made for items, respectively. For example, the goal of an attacker
might be to force a system to output poor recommendations for his competitors’
products (nuke) while attempting to secure positive recommendations for his own
(push).

From the perspective of the attacker, the best attack against a system is one that
yields the biggest impact for the least amount of effort. There are two types of effort
involved in mounting an attack. The first is the effort involved in crafting profiles.
On of the crucial variables here is the amount of knowledge that is required to put
together an attack. A high-knowledge attack is one that requires the attacker to have
detailed knowledge of the ratings distribution in a recommender system’s database.
Some attacks, for example, require that the attacker know the mean rating and stan-
dard deviation for every item. A low-knowledge attack is one that requires system-
independent knowledge such as might be obtained by consulting public information
sources.

We assume that the attacker will have a general knowledge of the type of al-
gorithm being employed to produce recommendations. An attacker that has more
detailed knowledge of the precise algorithm in use would be able to produce an in-
formed attack that makes use of the mathematical properties of the algorithm itself
to produce the greatest impact.

The second aspect of effort is the number of profiles that must be added to the
system in order for it to be effective. The ratings are less important since the in-
sertion of ratings can be easily automated. Most sites employ online registration
schemes requiring human intervention, and by this means, the site owner can im-
pose a cost on the creation of new profiles. This is precisely why, from an attacker’s
perspective, attacks requiring a smaller number of profiles are particularly attractive.

1 It could be argued that even such a technique did exist, it would not be in the interest of a
collaborative system to deploy it.

25 Robust Collaborative Recommendation 809

Fig. 25.2: Simplified system database showing authentic user profiles and a number
of attack profiles inserted. In this example, user h is seeking a prediction for item 7,
which is the subject of a product nuke attack.

25.2.1 An Example Attack

To illustrate the basic idea of a profile injection attack, consider the simplified rec-
ommender system database that is presented in Figure 25.2. In this example, the
objective is to demote the recommendations that are made for item 7 (i.e. a product
nuke attack), and a number of attack profiles (users i through m) have been inserted
into the system to target this item.

In particular, consider the binary recommendation problem in which the task is
to predict whether or not user h likes item 7. In the first instance, let the attack
profiles be ignored and consider only the authentic profiles (users a through g) as
possible neighbours for the target user, h. Regardless of the specific recommendation
algorithm used, presumably the algorithm would determine that users a and f have
similar tastes to the active user, and since both of these users like item 7, a positive
recommendation for the item follows.

When the attack profiles are also considered as possible neighbours, the situation
is significantly altered. Several of these attack profiles are also similar to user h, and,
since all of these profiles rate item 7 poorly, the system is now likely to recommend
a negative rating for the item. Thus, the objective of the attack is realised. The next
section discusses how these attack profiles must be crafted to work well in a realistic
setting.

�� �� �� �� �� �� 	�

��
� ��
�
�
�

�� ��
�
� �� �� ��

��
� ��
� �� �� ��

�� ��
�
� ��

�� �� �� �� �� ��

��
� ��
�
�
�
�

	� ��
�
� �� ��
�

�
� ��
�
�
� ��

��
� ��
� �� �� ��

�� ��
�
� �� ��

� �� �� �� �� ��

��
� ��
�
�
� ��

�� ��
�
� �� �� ��

������

�
�
�
	�

�

��������	

��
����

����	�

��
����

������

��
���

 �
 � � �

�

 � �

� � � � �

 �

 �

�

 � � �

 �

�

 � � �

 �
 � � �

�

 �

� � � � �

 �

�

 � �

 �

 �

810 Robin Burke, Michael P. O’Mahony and Neil J. Hurley

25.3 Characterising Attacks

A profile-injection attack against a recommender system consists of a set of profiles
added to the system by the attacker. A profile consists of a set of rating/item pairs, or
alternately, we can think of the profile being a vector of all items, with a rating value
for each item, but allowing the null value for unrated items. For the attacks that we
are discussing, there will always be a target item it that the attacker is interested
in promoting or demoting. There will generally also be a set of filler items, that are
chosen randomly from those available. We will denote this set IF . Some attack mod-
els also make use of a set of items that are selected out of the database. The small set
usually has some association with the target item (or a targeted segment of users).
For some attacks, this set is empty. This will be the set IS. Finally, for completeness,
the set I/0 contains those items not rated in the profile. Since the selected item set is
usually small, the size of each profile (total number of ratings) is determined mostly
by the size of the filler item set. Some of the experimental results report filler size
as a proportion of the size of I (i.e., the set of all items).

25.3.1 Basic Attacks

Two basic attack models, introduced originally in [12], are the random and aver-
age attack models. Both of these attacks involve the generation of profiles using
randomly assigned ratings to the filler items in the profile.

25.3.1.1 Random Attack

Random attack profiles consist of random ratings distributed around the overall
mean assigned to the filler items and a prespecified rating assigned to the target
item. In this attack model, the set of selected items is empty. The target item it is
assigned the maximum rating (rmax) or the minimum rating (rmin) in the case of push
or nuke attacks, respectively.

The knowledge required to mount such an attack is quite minimal, especially
since the overall rating mean in many systems can be determined by an outsider
empirically (or, indeed, may be available directly from the system). However, this
attack is not particularly effective [12, 6].

25.3.1.2 Average Attack

A more powerful attack described in [12] uses the individual mean for each item
rather than the global mean (except for the pushed item). In the average attack, each
assigned rating for a filler item corresponds (either exactly or approximately) to the
mean rating for that item, across the users in the database who have rated it.

25 Robust Collaborative Recommendation 811

As in the random attack, this attack can also be used as a nuke attack by using rmin
instead of rmax. It should also be noted that the only difference between the average
attack and the random attack is in the manner in which ratings are computed for the
filler items in the profile.

The average attack might be considered to have considerable knowledge cost of
order |IF | (the number of filler items in the attack profile) because the mean and stan-
dard deviation of these items must be known. Experiments, however, have shown
that the average attack can be just as successful even when using a small filler item
set. Thus the knowledge requirements for this attack can be substantially reduced,
but at the cost of making all profiles contain the same items, possibly rendering them
conspicuous [4].

25.3.2 Low-knowledge attacks

The average attack requires a relatively high degree of system-specific knowledge
on the part of attackers. A reasonable defense against such attacks would be to make
it very difficult for an attacker to accumulate the required distribution data. The next
set of attack types are those for which the knowledge requirements are much lower.

25.3.2.1 Bandwagon Attack

The goal of the bandwagon attack is to associate the attacked item with a small num-
ber of frequently rated items. This attack takes advantage of the Zipf’s distribution
of popularity in consumer markets: a small number of items, bestseller books for ex-
ample, will receive the lion’s share of attention and also ratings. The attacker using
this model will build attack profiles containing those items that have high visibil-
ity. Such profiles will have a good probability of being similar to a large number of
users, since the high visibility items are those that many users have rated. It does not
require any system-specific data, because it is usually not difficult to independently
determine what the “blockbuster” items are in any product space.

The bandwagon attack uses selected items which are likely to have been rated
by a large number of users in the database. These items are assigned the maximum
rating value together with the target item it . The ratings for the filler items are deter-
mined randomly in a similar manner as in the random attack. The bandwagon attack
therefore can be viewed as an extension of the random attack.

As we show in Section 25.4, the bandwagon attack is nearly as effective as the
average attack against user-based collaborative filtering algorithms2, but without the
knowledge requirements of that attack. Thus it is more practical to mount. However,
as in the case of the average attack, it falls short when used against an item-based
algorithm [12].

2 Refer to Chapter 4 for details on the user-based and item-based collaborative filtering algorithms.

812 Robin Burke, Michael P. O’Mahony and Neil J. Hurley

25.3.2.2 Segment Attack

Mobasher et al. [19] introduced the segment attack and demonstrated its effective-
ness against the item-based algorithm. The basic idea behind the segment attack is
to push an item to a targeted group of users with known or easily predicted pref-
erences. For example, the producer of a horror movie might want to get the movie
recommended to viewers who have liked other horror movies. In fact, the producer
might prefer not to have his movie recommender to viewer who do not enjoy the
horror genre, since these users might complain and thereby reveal his attack.

To mount this attack, the attacker determines a set of segment items that are
likely to be preferred by his intended target audience. Like the bandwagon attack, it
is usually fairly easy to predict what the most popular items in a user segment would
be. These items are assigned the maximum rating value together with the target item.
To provide the maximum impact on the item-based algorithm, the minimum rating
is given to the filler items, thus maximising the variations of item similarities.

25.3.3 Nuke Attack Models

All of the attack models described above can also be used for nuking a target item.
For example, as noted earlier, in the case of the random and average attack models,
this can be accomplished by associating rating rmin with the target item instead of
rmax . However, the results presented in Section 25.4 suggest that attack models
that are effective for pushing items are not necessarily as effective for nuke attacks.
Thus, researchers have designed additional attack models designed particularly for
nuking items.

25.3.3.1 Love/Hate Attack

The love/hate attack is a very simple attack, with no knowledge requirements. The
attack consists of attack profiles in which the target item it is given the minimum
rating value, rmin, while other ratings in the filler item set are the maximum rating
value, rmax. This can be seen as a very low-knowledge version of the Popular Attack
below. Surprisingly, this is one of the most effective nuke attacks against the user-
based algorithm.

25.3.3.2 Reverse Bandwagon Attack

The reverse bandwagon attack is a variation of the bandwagon attack, discussed
above, in which the selected items are those that tend to be rated poorly by many
users. These items are assigned low ratings together with the target item. Thus the
target item is associated with widely disliked items, increasing the probability that

25 Robust Collaborative Recommendation 813

the system will generate low predicted ratings for that item. This attack was de-
signed to reduce the knowledge required by selecting only a handful of known dis-
liked items. For example, in the movie domain, these may be box office flops that
had been highly promoted prior to their openings.

In Section 25.4, we show that although this attack is not as effective as the more
knowledge-intensive average attack for nuking items in the user-based system, it is
a very effective nuke attack against item-based recommender systems.

25.3.4 Informed Attack Models

The low-knowledge attacks above work by approximating the average attack, con-
centrating on items that are expected to be rated because of their popularity. The
average attack in turn is a natural choice for an attacker with a basic intuition about
collaborative recommendation, namely that users will be compared on the basis of
similarity, so the incentive is to make the profiles similar to the average user. If, on
the other hand, the attacker has more detailed knowledge of the precise algorithm, a
more powerful attack can be mounted.

25.3.4.1 Popular Attack

Let us assume that the recommender system uses the widely studied user-based
algorithm proposed in [27], where similarities between users are calculated using
Pearson correlation3. In a similar manner to the bandwagon attack, attack profiles
are constructed using popular (i.e. frequently rated) items from the domain under
attack.

A high degree of overlap does not, however, guarantee high similarities between
attack and authentic profiles. The bandwagon attack used random filler items to gen-
erate variation among ratings with the aim of producing at least some profiles that
correlate correctly with any given user. The Popular Attack makes use of average
rating data and rates the filler items either rmin + 1 and rmin, according to whether
the average rating for the item is higher or lower. Linking the rating value to the
average rating is likely to result in positive correlations between attack and authen-
tic profiles and furthermore also maximises the prediction shift (see Section 25.4)
of attack profiles as computed by the algorithm under consideration (see [25] for
details).4

3 See [25] for a discussion on informed attacks in cases where alternative similarity metrics are
employed. Note that none of the metrics considered provided robustness against attack.
4 Note that an optimal push attack strategy is also presented in [18]. In this case, it is concluded that
maximising the correlation between authentic and attack profiles is the primary objective. While
this conclusion makes sense, it is important to select attack profile ratings that also maximise
prediction shift, as is the case with the popular attack described here.

814 Robin Burke, Michael P. O’Mahony and Neil J. Hurley

The ratings strategy described above applies to push attacks; this strategy can
easily be adjusted for nuke attacks. For example, positive correlations but negative
prediction shifts can be achieved by assigning the target item a rating of rmin, and
ratings of rmax and rmax−1 to the more- and less-liked selected items.

The knowledge requirement here is intermediate between the bandwagon attack
and the average attack. Like the bandwagon attack, the popular items can usually be
easily estimated from outside the system; but because there are no filler items, the
Popular Attack will need more popular items. The attacker then needs to guess at
the relative average preferences between these items in order to provide the correct
rating. It might be possible to extract such distinctions from the system itself, or if
not, to mine them from external sources; for example, by counting the number of
positive and negative reviews for particular items to find general trends.

25.3.4.2 Probe Attack Strategy

Although there are no studies that look at the detectability of the popular attack,
it seems likely that it would be easy to detect since all of the attack profiles are
identical and also because in many rating databases rmin + 1 and rmin ratings are
relatively rare.

A less conspicuous strategy is to obtain items and their ratings from the sys-
tem itself via the Probe Attack. To perform this strategy, the attacker creates a seed
profile and then uses it to generate recommendations from the system. These recom-
mendations are generated by the neighboring users and so they are guaranteed to be
rated by at least some of these users and the predicted ratings will be well-correlated
with these users’ opinions. One could imagine probing narrowly in order to influ-
ence a small group as in the segment attack, or probing more broadly to construct
an average attack. In a sense, the probe attack provides a way for the attacker to
incrementally learn about the system’s rating distribution.

This strategy also has another advantage over the popular attack, since less do-
main knowledge is required by an attacker. Only a small number of seed items need
to be selected by the attacker, thereafter the recommender system is used to iden-
tify additional items and ratings. In the experiments conducted in Section 25.4, seed
items are selected and assigned ratings in a similar manner as in the popular attack.

25.4 Measuring Robustness

Collaborative recommendation algorithms can be categorised into two general
classes, which are commonly referred to as memory-based and model-based al-
gorithms [2]. Memory-based algorithms utilise all available data from a system
database to compute predictions and recommendations. In contrast, model-based
algorithms operate by first deriving a model from the system data, and this model is
subsequently used in the recommendation process.

25 Robust Collaborative Recommendation 815

A wide range of collaborative recommendation algorithms have been proposed
in the literature, and a comprehensive analysis of the robustness of all of these al-
gorithms is beyond the scope of this chapter. Here, we focus on two widely imple-
mented and studied algorithms, the user-based and item-based algorithms [27, 32].
The reader is referred to [21, 20, 31] for a robustness analysis of some other collab-
orative recommendation algorithms.

25.4.1 Evaluation Metrics

Since the objective of push and nuke attacks is to promote and demote target items,
we need to evaluate how successfully they do so. Evaluation metrics for robustness
need to capture the differences in the predicted ratings and recommended status (i.e.
whether or not the target item in included in a top N recommended list) of target
items pre- and post-attack.

Many researchers have used average prediction shift to evaluate the changes in
predicted ratings. Let UT and IT be the sets of users and items, respectively, in the
test data. For each user-item pair (u, i), the prediction shift denoted by ∆u,i can be
measured as ∆u,i = p′u,i− pu,i, where p and p′ are the pre- and post-attack predic-
tions, respectively. A positive value means, for example, that the attack has suc-
ceeded in making a pushed item more positively rated. The average prediction shift
for an item i over all users can be computed as ∆i = ∑u∈UT ∆u,i/|UT |. Similarly the
average prediction shift for all items tested can be computed as ∆̄ = ∑i∈IT ∆i/|IT |.

Prediction shift is a good indicator that an attack is having the desired effect
of making a pushed (or nuked) item appear more (or less) desirable. However, it
is possible that a pushed item, for example, could be strongly shifted on average
but still not make it onto a recommendation list. Such a situation could arise if the
item’s initial average prediction is so low that even a strong boost is insufficient. To
capture the impact of an attack on prediction lists, another metric has been proposed:
hit ratio. Let Ru be the set of top N recommendations for user u. If the target item
appears in Ru, for user u, the scoring function Hui has value 1; otherwise it is zero.
Hit ratio for an item i is given by HitRatioi = ∑u∈UT Hui/|UT |. Average hit ratio can
then calculated as the sum of the hit ratio for each item i following an attack on i
across all items divided by the number of items: HitRatio = ∑i∈IT HitRatioi/|IT |.

Many experimenters make use of the publicly available MovieLens 100K dataset5.
This dataset consists of 100,000 ratings made by 943 users on 1,682 movies. Rat-
ings are expressed on an integer rating scale of 1 to 5 (the higher the score, the more
liked an item is). Results below should be assumed to be relative to this dataset
unless otherwise stated.

5 http://www.cs.umn.edu/research/GroupLens/data/.

816 Robin Burke, Michael P. O’Mahony and Neil J. Hurley

0 5 10 15
0

0.5

1

1.5

2

Attack Size (%)

P
re

d
ic

ti
o

n
 S

h
if
t

Average (3%)

Bandwagon (3%)

Random (6%)

0 10 20 30 40 50
0%

20%

40%

60%

80%

100%

of Recommendations

H
it
 R

a
ti
o

Average (3%)

Bandwagon (3%)

Random (6%)

Baseline

Fig. 25.3: Prediction shift (left) and hit ratio (right) for product push attacks
mounted against the user-based collaborative recommendation algorithm. Hit ratio
results relate to a 10% attack size.

25.4.2 Push Attacks

To get a sense for the impact that a push attack can have, we will look at results
originally reported in [20]. In these figures, the user-based algorithm is subjected
to various attacks of different sizes (attack size is measured as a percentage of the
total number of authentic profiles in the system; thus an attack of 1% equates to the
insertion of 10 attack profiles into the MovieLens dataset). Figure 25.3 (left) shows
the average attack (3% filler size), the bandwagon attack (using one frequently rated
item and 3% filler size), and the random attack (6% filler size). These parameters
were selected as they are the versions of each attack that were found to be most
effective. Not surprisingly, the most knowledge-intensive average attack achieved
the best performance in terms of prediction shift. This attack works very well. It
is capable of moving an average-rated movie (3.6 is the mean) to the top of the
five point scale. The performance of the bandwagon attack was quite comparable,
despite having a minimal knowledge requirement. In addition, the bandwagon at-
tack was clearly superior to the random attack, which highlights the significance of
including the selected items that are likely to be rated by many users.

Interestingly, Figure 25.3 (right) shows that the largest hit ratios were achieved
by the bandwagon attack, indicating that prediction shift does not necessarily trans-
late directly into top N recommendation performance. This result is particularly
encouraging from the attacker’s perspective, given that the required knowledge to
implement such attacks is low. Note that all attacks significantly outperform the
pre-attack hit ratio results (indicated by “baseline” in the figure).

The item-based algorithm was shown in [12] to be relatively robust against the
average attack. The segment attack, introduced in [19], was specifically crafted as
a limited-knowledge attack for the item-based algorithm. It aims to increase the
column-by-column similarity of the target item with the users preferred items. If the

25 Robust Collaborative Recommendation 817

Fig. 25.4: Prediction shift (left) and hit ratio (right) for product push attacks
mounted against the item-based collaborative recommendation algorithm. Hit ratio
results relate to a 10% attack size.

target item is considered similar to something that the user likes, then its predicted
rating will be high – the goal of the push attack. The task therefore for the attacker
is to associate her product with popular items that are considered to be similar.
The users who have a preference for these similar items are considered the target
segment. The task for the attacker in crafting a segment attack is therefore to select
items similar to the target item for use as the segment portion of the attack profile
IS . In the realm of movies, we might imagine selecting films of a similar genre or
those containing the same actors.

In [19], user segments are constructed by looking at popular actors and gen-
res. For the results shown in Figure 25.4, the segment is all users who gave above
average ratings (4 or 5) to any three of the five selected horror movies, namely,
Alien, Psycho, The Shining, Jaws, and The Birds. For this set of five movies, the
researchers selected all combinations of three movies that had at least 50 users sup-
port, and chose 50 of those users randomly and averaged the results.

The power of the segmented attack is demonstrated in the figure, which contrasts
the horror movie fans against the set of all users. While the segmented attack shows
some impact against all users, it is clearly very successful in pushing the attacked
movie precisely to those users defined by the segment. Further, in the context of the
item-based algorithm, the performance of this attack compares very favourably to
that of the high-knowledge average attack. For example, the average attack achieved
a hit ratio of 30% against all users for top N lists of size 10 and an attack size of
10%. In contrast, the segmented attack achieved approximately the same hit ratio
for the same size top N list, but using an attack size of only 1%.

It should also be noted that, although designed specifically as an attack against
the item-based algorithm, the segment attack is also effective against the user-based
algorithm. Due to limitations of space, we do not show these results here – refer to
[20] for details.

� � �� ��
�

���

���

���

��	

�

���
����������

�
��
��

�
��
��
�
��
��

�

�

����� !���

""�#���

� �� �� �� �� ��
�	�

��	

��	

��	

��	

��	

�	

���
����������������

�
���
�
��
��

�

�

����������
��������
��������

818 Robin Burke, Michael P. O’Mahony and Neil J. Hurley

Fig. 25.5: Prediction shifts achieved by nuke attacks against the user-based (left)
and item-based (right) algorithms.

25.4.3 Nuke Attacks

It might be assumed that nuke attacks would be symmetric to push attacks, with
the only difference being the rating given to the target item and hence the direction
of the impact on predicted ratings. However, our results show that there are some
interesting differences in the effectiveness of models depending on whether they are
being used to push or nuke an item. In particular, the rating distribution should be
taken into account: there are in general relatively few low ratings in the MovieLens
database, so low ratings can have a big impact on predictions. Furthermore, if we
look at the top N recommendations, the baseline (the rate at which an average movie
makes it into a recommendation list) is quite low, less than 0.1 even at a list size of
50. It does not take much to make an item unlikely to be recommended.

In the love/hate attack, the randomly selected 3% of filler items were assigned
the maximum rating while the target item was given the minimum rating. For the
reverse bandwagon attack (designed to attack the item-based algorithm), items with
the lowest average ratings that meet a minimum threshold in terms of the number of
user ratings in the system are selected as the selected item set, as described in detail
in Section 25.3. The experiments were conducted using |IS| = 25 with a minimum
of 10 users rating each movie.

Results are shown in Figure 25.5 for all attack models. Despite the minimal
knowledge required for the love/hate attack, this attack proved to be the most effec-
tive against the user-based algorithm. Among the other nuke attacks, the bandwagon
attack actually surpassed the average attack, which was not the case with the push
results discussed above.

The asymmetry between these results and the push attack data is somewhat
surprising. For example, the love/hate attack produced a positive prediction shift
slightly over 1.0 for a push attack of 10% against the user-based algorithm, which
is much less effective than even the random attack. However, when used to nuke

� � �� ��
����

��

����

��

����

�

���

�		
���
�������

�
��
��
�	
��
��

��
�	

�

�

����
�������
�
���
��������

���!��"��
#���$%
	������
 ����&���
���
��������

� � �� ��
����

����

����

����

�

���

���	
���
'�����

�
��
�

�

�
��
�
�

��

�

�

����	�������
�	��(��������
�	���������
����$�	�������
���������	��(��������

25 Robust Collaborative Recommendation 819

an item against the user-based algorithm, this model was by far the most effective
model we tried, with a prediction shift of almost twice that of the average attack.
For pushing items, the average attack was the most successful, while it proved to be
one of the least successful attacks for nuking items. The bandwagon attack, on the
other hand, performed nearly as well as the average attack in pushing items, and had
superior overall performance for nuking, despite its lower knowledge requirement.

Overall, the item-based algorithm proved to be far more robust. The average
attack was the most successful nuke attack here, with reverse bandwagon close be-
hind. The asymmetries between push and nuke continue as we examine the item-
based results. The random and love/hate attacks were poor performers for push at-
tacks, but as nuke attacks, they actually failed completely to produce the desired
effect. Reverse bandwagon (but not bandwagon) proved to be a reasonable low-
knowledge attack model for a nuke attack against the item-based algorithm.

25.4.4 Informed Attacks

Finally, we turn to the evaluation of the informed attack strategies against the user-
based algorithm. In particular, we compare the performance of the informed popular
and probe push attacks to the average attack as seen above.

The attacks were implemented as follows. Popular attack profiles consisting of
a total of 100 items (including the target item) were selected and assigned ratings
as described in Section 25.3. For the probe attack, 10 seed items were selected at
random from the 100 most frequently rated items from the system. Thereafter the
system was interrogated to discover additional profile items and ratings. In total,
probe attack profiles consisted of 100 items. Likewise, the benchmark average attack
profiles consisted of 100 items, which corresponds to a filler size of approximately
1.7%. For the purposes of comparison, the 100 most frequently-rated items were
chosen for average attack profiles (and not selected randomly, as before).

Figure 25.6 shows the hit ratios achieved by the three attacks. It is clear from the
figure that the impact of the informed attacks was significantly greater than that of
the average attack. For example, for an attack size of only 2%, the hit ratios achieved
by the popular, probe and average attacks were 65%, 34% and 3%, respectively, for
top N lists of size 10. Thus the advantage of creating attacks that consider particular
features of the algorithm under attack is clearly demonstrated.

The main drawback associated with the informed attacks lies in the high degree
of domain knowledge that is required in order to select the appropriate items and rat-
ings with which to create the attack profiles. As discussed in Section 25.3, however,
such knowledge is often made directly available to attackers by recommender sys-
tem applications. Further, the knowledge required can often be obtained from other
sources, e.g. by examining best seller lists and the number of positive and negative
reviews received by items, etc. Even in situations where such data is only partially
available, previous work demonstrates that these informed attacks retain their strong
performance [26].

820 Robin Burke, Michael P. O’Mahony and Neil J. Hurley

Fig. 25.6 Hit ratios achieved
by the popular, probe and
average push attacks against
the user-based algorithm.

0 1 2 3 4 5
0%

10%

20%

30%

40%

50%

60%

70%

Attack Size (%)

H
it
 R

a
ti
o

Popular

Probe

Average

25.4.5 Attack impact

It is clear from the research summarized above that the memory-based algorithms
that form the core of collaborative recommendation research and practice are highly
vulnerable to manipulation. An attacker with fairly limited knowledge can craft at-
tacks that will make any item appear well liked and promote it into many users’
recommendation lists. The “efficient” attacks that have been developed clearly are
a threat to the stability and usability of collaborative systems and thus we see the
justification for the low-scale / high-impact portion of the theoretical curve shown
in Figure 25.1.

To respond to this threat, researchers have examined two complementary re-
sponses. The shaded “detection” areas in Figure 25.1 point towards the first re-
sponse, which is to detect the profiles that make up an attack and eliminate them.
The second approach is to design algorithms that are less susceptible to the types of
attacks that work well against the classic algorithms.

25.5 Attack Detection

Figure 25.7 summarises the steps involved in attack detection. This is a binary clas-
sification problem, with two possible outcomes for each profile, namely, Authentic,
meaning that the classifier has determined that the profile is that of a genuine system
user or Attack, meaning that the classifier has determined that this is an instance of
an attack profile. One approach to the detection problem, followed by work such as
[7, 1], has been to view it as a problem of determining independently for each profile
in the dataset, whether or not it is an attack profile. This is the ‘single profile’ input
shown in Figure 25.7. The input is a single rating vector ru, for some user u from
the dataset. Before processing by the classifier, a feature extraction step may extract
a set of features, fu = (f1, . . . , fk) from the raw rating vector ru. The classifier takes
fu as input and outputs, “Attack” or “Authentic”. If the classifier is a supervised clas-
sifier, then a training phase makes use of annotated dataset of profiles, i.e. a set of
profiles labelled as Authentic or Attack, in order to learn the classifier parameters.

25 Robust Collaborative Recommendation 821

Because most attack scenarios consist of groups of profiles working in concert
to push or nuke a particular item, work such as [16, 23] has suggested that there
is benefit to considering groups of profiles together when making the classification.
This is represented by the ‘Group of Profiles’ input, in which the classifier considers
an entire group of profiles, possibly after some feature extraction, and outputs a label
for each profile in the group. Note that not all steps may take place in any particular
scenario. For instance, there may be no feature extraction, in which case, f = r and
if unsupervised classifiers are used, then there is no need for a training phase.

Fig. 25.7: The detection process.

25.5.1 Evaluation Metrics

To compare different detection algorithms, we are interested primarily in measures
of classification performance. Taking a ‘positive’ classification to mean the labeling
of a profile as Attack, a confusion matrix of the classified data contains four sets,
two of which – the true positives and true negatives – consist of profiles that were
correctly classified as Attack or Authentic, respectively; and two of which – the false
positives and false negatives – consist of profiles that were incorrectly classified
as Attack or Authentic, respectively. Various measures are used in the literature
to compute performance based on the relative sizes of these sets. Unfortunately,
different researchers have used different measures, making direct comparison of
results sometimes difficult.

Precision and recall are commonly used performance measures in information
retrieval. In this context, they measure the classifier’s performance in identifying at-

822 Robin Burke, Michael P. O’Mahony and Neil J. Hurley

tacks. Each measure counts the number of attack profiles correctly classified. Recall
which is also called sensitivity presents this count as a fraction of the total number
of actual attacks in the system. Precision, which is also called the positive predictive
value (PPV), presents this count as a fraction of the total number of profiles labelled
as Attack:

recall ≡ sensitivity =
true positives

true positives+# false negatives
, (25.1)

precision≡ PPV =
true positives

true positives+# false positives
.

Analogous measures can be given for performance in identifying authentic profiles.
Specificity presents the count of authentic profiles correctly classified as a fraction
of the total number of authentic profiles in the system. Negative predictive value
(NPV), presents the count as a fraction of the total number of profiles labelled Au-
thentic:

speci f icity =
true negatives

true negatives+# false positives
, (25.2)

NPV =
true negatives

true negatives+# false negatives
.

In detection results below, we use the terms precision, recall, specificity and NPV.

25.5.1.1 Impact on Recommender and Attack Performance

The misclassification of authentic profiles results in the removal of good data from
the ratings database, which has the potential to impact negatively on the overall per-
formance of the recommender system. One way to assess this impact is to compute
the MAE of the system before and after detection and filtering. On the positive side,
the removal of attack profiles reduces attack performance. Assuming the attack is
a push or nuke attack, the degree to which attack performance is affected can be
assessed by computing the prediction shift on the targeted item before and after
detection and filtering.

25.5.2 Single Profile Detection

The basis of individual profile detection is that the distribution of ratings in an attack
profile is likely to be different to that of authentic users and therefore each attack
profile can be distinguished by identification of these differences. As such, individ-
ual profile detection is an instance of a statistical detection problem. It should be
noted that it is in the interest of the attacker to minimise the statistical differences
between attack and authentic profiles, in order to minimise the probability of de-

25 Robust Collaborative Recommendation 823

tection. On the other hand, a cost-effective attack is likely to consist of unusually
influential profiles – e.g., a targeted pushed item will have unusualy high ratings
and filler items may have been chosen to support the influence of the profile towards
high ratings for the target. As a result, distinctive characteristics are likely to exist
and may be manifested in many ways, including an abnormal deviation from the
system average rating, or an unusual number of ratings in a profile [1].

25.5.2.1 Unsupervised Detection

An unsupervised individual profile detection algorithm is described in [7]. Detec-
tion is based on certain common generic attributes of attack profiles, for example
that there is a higher than usual rating deviation from mean in such profiles and that
such profiles are likely to have a higher than usual similarity to their closest neigh-
bours. Measures of these attributes are proposed and these are applied to compute a
probability that a profile is an attack profile.

25.5.2.2 Supervised Detection

Supervised detection algorithms have focussed on the selection of attributes of at-
tack profiles from which to build a feature vector for input to a classifier. Generally,
such features have been selected by observation of generic attributes that are com-
mon across attack profiles of a number of different attack strategies and also model
specific attributes that are common across profiles that have been generated for a
specific type of attack.

In [5] profile attributes based to those proposed in [7] and others along similar
lines were developed into features for inclusion in a feature vector input to a super-
vised classifer. Moreover, other features based on the statistics of the filler and target
items in the user profile, rather than the entire profile, were proposed. For example,
the filler mean variance feature is defined as the variance of the ratings in the filler
partition of the profile and is used to detect average attacks; the filler mean target
difference feature, defined as the difference between the means of the target items
and the means of the filler items, is used to detect bandwagon attacks.

The authors looked at three supervised classifiers: kNN, C4.5, and SVM. The
kNN classifier uses detection attributes of the profiles to find the k = 9 nearest
neighbors in the training set using Pearson correlation for similarity to determine
the class. The C4.5 and SVM classifiers are built in a similar manner such that they
classify profiles based on the detection attributes only. The results for the detection
of a 1% average attack over various filler sizes are reproduced in Figure 25.8. SVM
and C4.5 have near perfect performance on identifying attack profiles correctly, but
on the other hand, they also misclassify more authentic profiles than kNN. SVM has
the best combination of recall and specificity across the entire range of filler sizes
for a 1% attack.

824 Robin Burke, Michael P. O’Mahony and Neil J. Hurley

0 20 40 60 80 100
70%

75%

80%

85%

90%

95%

100%

Filler Size (%)

R
e

c
a

ll

C45

kNN

SVM

0 20 40 60 80 100

86%

88%

90%

92%

94%

96%

98%

100%

Filler Size (%)

S
p

e
c
if
ic

it
y

C45

kNN

SVM

Fig. 25.8: Recall (left) and specificity (right) vs filler size for three classifiers trained
on a 1% average attack.

The effect of misclassification of authentic profiles is assessed by examining the
MAE of the system before and after detection and filtering. The increase in MAE is
observed to be less than 0.05 on a rating scale of 1–5. Finally the effectiveness of
the attack as measured by the prediction shift on the targeted item is shown to be
significantly reduced when detection is used. All three classifiers reduce the range of
attacks that are successful, particularly at low attack sizes. The SVM algorithm, in
particular, dominates for attack sizes less than 10%, allowing no resulting prediction
shift over that entire range.

25.5.3 Group Profile Detection

A number of unsupervised algorithms that try to identify groups of attack profiles
have been proposed [23, 33, 18]. Generally, these algorithms rely on clustering
strategies that attempt to distinguish clusters of attack profiles from clusters of au-
thentic profiles.

25.5.3.1 Neighbourhood Filtering

In [23] an unsupervised detection and filtering scheme is presented. Rather than fil-
tering profiles from the dataset in a preprocessing step, in this method, filtering is
applied to the profiles in the active user’s neighbourhood during prediction for a par-
ticular item. This approach has the advantage of identifying just those attack profiles
that are targeting the active item. The strategy is based on an algorithm proposed in
[8] in the context of reputation reporting systems that aims to provide a reputation
estimate for buyers and sellers engaged in on-line marketplaces that is robust to
malicious agents who attempt to fradulently enhance their own reputations. The ap-

25 Robust Collaborative Recommendation 825

Fig. 25.9 Precision and
NPV for the neighbourhood
filtering algorithm vs attack
size.

0 1 2 3 4
0

20%

40%

60%

80%

100%

Attack Size (%)

P
re

c
is

io
n

 /
 N

P
V

Precision

NPV

proach involves the clustering of neighbourhoods into two clusters. Analysing the
statistics of the clusters, a decision is made as to whether an attack is present and, if
so, which cluster contains the attack profiles. All profiles in the cluster are removed.

Clustering is performed using the Macnaughton-Smith [13] divisive clustering
algorithm. The rating distributions for the active item over each of the clusters are
then compared. Since the goal of an attacker is to force the predicted ratings of
targeted items to a particular value, it is reasonable to expect that the ratings for
targeted items that are contained in any attack profiles are centered on the attack
value, which is likely to deviate significantly from the mean of the authentic neigh-
bours’ ratings. Thus an attack is deemed to have taken place if the difference in the
means for the two clusters is sufficiently large. The cluster with the smaller standard
deviation is determined to be the attack cluster.

Results for this algorithm (using precision and NPV) applied to an informed
nuke attack on the Movielens dataset are reproduced in Figure 25.9. The fraction of
authentic users contained in the cluster identified as the cluster of authentic users
is at least 75% for all attack sizes tested, so attack profiles are being effectively
filtered from the system. However, particularly for small attack sizes, a significant
proportion of the attack cluster is made up of authentic users. The cost of removing
malicious profiles is to also lose authentic profiles that may have contributed to the
accuracy of the prediction. Results show that filtering a system that has not been
attacked leads to an increase of around 10% in the MAE.

25.5.3.2 Detecting attacks using Profile Clustering

In [18] the observation is made that attacks consist of multiple profiles which are
highly correlated with each other, as well as having high similarity with a large
number of authentic profiles. This insight motivates the development of a clustering
approach to attack detection, using Probabilistic Latent Semantic Analysis (PLSA)
and Principal Component Analysis (PCA).

In the PLSA model [11], an unobserved factor variable Z = {z1, . . . zk} is as-
sociated with each observation. In the context of collaborative recommendation, an
observation corresponds to a rating for some user-item pair and ratings are predicted

826 Robin Burke, Michael P. O’Mahony and Neil J. Hurley

using

Pr(u, i) =
k

∑
i=1

Pr(zi)Pr(u|zi)Pr(i|zi) .

The parameters of this expression are chosen to maximise the likelihood of the ob-
served data, using the Expectation Maximisation algorithm. As discussed in [21],
the parameters Pr(u|zi) can also be used to produce a clustering of the users by as-
signing each user u to each cluster Ci such that Pr(u|zi) exceeds a certain threshold
µ or to the cluster that maximises Pr(u|zi) if µ is never exceeded.

It is noted in [18] that all or most attack profiles tend to be assigned to a single
cluster. Identifying the cluster containing the attack profiles provides an effective
strategy for filtering them from the system. Using the intuition that clusters con-
taining attack profiles will be ‘tighter’ in the sense that the profiles are very similar
to each other, the average Mahalanobis distance over the profiles of each cluster is
calculated and that with the minimum distance is selected for filtering. Experiments
show that PLSA based attack detection works well against strong attacks. However,
for weaker attacks the attack profiles tend to be distributed across different clusters.

A second strategy to exploit the high similarity between attack profiles proposed
in [18] is to base a clustering on a PCA of the covariance matrix of the user pro-
files. Essentially this strategy attempts to identify a cluster where the sum of the
pair-wise covariances between profiles in the cluster is maximised. PCA has been
widely used as a dimension reduction strategy for high-dimensional data. Identify-
ing profiles with dimensions, the method is explained intuitively in [18] as a method
of identifying those highly-correlated dimensions (i.e. profiles) that would safely be
removed by PCA. Alternatively, a cluster C can be defined by an indicator vector
y such that y(i) = 1 if user ui ∈ C and y(i) = 0 otherwise. With S defined as the
covariance matrix, the sum of the pair-wise covariances of all profiles in C, may be
written as the quadratic form

yT Sy = ∑
i∈C, j∈C

S(i, j) .

Moreover, for the normalised eigenvectors xi of S, associated with eigenvector λi
such that λ1 ≤ ·· · ≤ λm, the quadratic form evaluates as

yT Sy =
m

∑
i=1

(y.xi)
2(xT

i Sxi) =
m

∑
i=1

(y.xi)
2λi .

With this observation, the method described in [18] may be understood as a method
that seeks the binary vector y that maximises the quadratic form by choosing y so
that it has small correlation with those 3−5 eigenvectors corresponding to the small-
est eigenvalues and hence correlates strongly with the eigenvectors corresponding
to large eigenvalues.

Precision and recall results for the PLSA and PCA clustering strategies are re-
produced in Figure 25.10 for an average attack of size 10%. Similar results have
been obtained for random and bandwagon attacks. The PLSA and PCA clustering

25 Robust Collaborative Recommendation 827

strategies require that the size of the filtered cluster be specified and, in these results,
the cluster size is taken to be the actual number of inserted attack profiles. This point
should be taken into account in comparing the results with those obtained with the
neighbourhood filtering strategy (Figure 25.9), in which no such control on the clus-
ter size was applied. The 80% maximum recall obtained for the PLSA strategy is
due to the fact that the wrong cluster is selected approximately 20% of the time. The
PCA clustering strategy shows very good performance, even in the case of attacks
consisting of a mixture of random, average and bandwagon profiles.

The UnRAP algorithm [3] also uses clustering to distinguish attack profiles. This
algorithm uses a measure called the Hv score which has proved successful in iden-
tifying highly correlated biclusters in gene expression data. In the context of attack
detection, the Hv score measures for each user, a sum of the squared deviations of
its ratings from the user mean, item mean and overall mean ratings:

Hv(u) =
∑i∈I(ru,i− r̄i− r̄u + r̄)2

∑i∈I(ru,i− r̄u)2 ,

where r̄i is the mean over all users of the ratings for item i, r̄u is the mean over all
items of the ratings for user u and r̄ is the mean over users and items.

A Hv score is assigned to all users in the database and users are sorted according
to this score. The top r = 10 users with highest score are identified as potential
attackers and are examined to identify a target item. The target is identified as that
which deviates most from the mean user rating. Next, a sliding window of r users
is passed along the sorted user list, shifting the window by one user each iteration.
The sum of the rating deviation for the target item is calculated over the window
and a stopping point is reached when this sum reaches zero. The users traversed
during this process become candidate attack profiles, which are then further filtered
by removing any that have not rated the item or whose rating deviation is in the
opposite direction to the attack. Precision results for this method on an average
attack are reproduced in Figure 25.10, compared with the PCA clustering strategy.
In general, the authors report that this method performs well particularly for mid-
size attacks, in which other methods show a dip in performance.

25.5.4 Detection findings

For both supervised and unsupervised detection, it has proved possible to achieve
reasonably good performance against the attack types discussed in 25.3. Perhaps
this is not so surprising, since the assumption is that these attacks are crafted ac-
cording to a fairly regular pattern and thereby vary substantially from the real users
of the system. The extent to which real-life attacks against recommender systems
correspond to these idealized models is not known, since e-commerce companies

828 Robin Burke, Michael P. O’Mahony and Neil J. Hurley

0 10 20 30 40 50 60
0%

20%

40%

60%

80%

100%

Filler Size (%)

P
re

c
is

io
n

 /
 R

e
c
a

ll

PLSA precision

PLSA recall

PCA recall

PCA precision

0 2 4 6 8 10
90%

92%

94%

96%

98%

100%

Attack Size (%)

P
re

c
is

io
n

PCA clustering

unRAP

Fig. 25.10: Precision and recall for the PLSA and PCA clustering strategies vs filer
size for a 10% average attack (left). Precision vs attack size for PCA clustering and
UnRAP on an average attack, with filler size=10% (right).

have been reluctant to reveal vulnerabilities that they have identified in their own
systems.

Going back to the framework in Figure 25.1, these findings give us some opti-
mism that the shaded area at the upper left exists. That is, it is possible to detect
attacks that are crafted to be optimal against the well-known memory-based algo-
rithms. It remains an open question to what extent these detection measures extend
downward and to the right, into regions where attacks differ from the optimal and
have correspondingly less impact, but still remain a source of profit for the attacker.

25.6 Robust Algorithms

An alternative (or perhaps a complement) to filtering and detection is to develop rec-
ommendation algorithms that are intrinsically robust to attack. To date, researchers
have largely tried to identify algorithms robust against the attacks that work well
on the memory-based algorithms. An open question is whether new attacks can be
tailored to exploit vulnerabilities in algorithms that have shown high robustness to
standard attacks.

25.6.1 Model-based Recomendation

It has been shown in [21] that model-based recommendation algorithms provide a
greater degree of robustness to attack strategies that have proven highly effective on
memory-based algorithms. Moreover, this robustness does not come at a significant
cost in terms of recommendation accuracy. This work has been followed up in [17,

25 Robust Collaborative Recommendation 829

15], which surveys model-based attack resistant algorithms and proposes a robust
matrix factorisation strategy.

A model-based recommendation strategy based on clustering user profiles is
analysed in [21]. In this strategy, similar users are clustered into segments and the
similarity between the target user and a user segment is calculated. For each seg-
ment, an aggregate profile, consisting of the average rating for each item in the
segment is computed and predictions are made using the aggregate profile rather
than individual profiles. To make a recommendation for a target user u and target
item i, a neighbourhood of user segments that have a rating for i and whose aggre-
gate profile is most similar to u is chosen. A prediction for item i is made using
the k nearest segments and associated aggregate profiles, rather than the k nearest
neighbours. Both k-means clustering and PLSA-based clustering, as described in
Section 25.5.3.2, are evaluated. The prediction shift achieved by an average attack
on these algorithms, compared with the standard kNN algorithm, is shown in Fig-
ure 25.11 (left). The model-based algorithms are considerably more robust and not
significantly less accurate, since, according to [21], PLSA and k-means clustering
achieve an MAE of 0.75 and 0.76 using 30 segments, in comparison to a value of
0.74 for kNN.

25.6.2 Robust Matrix Factorisation (RMF)

One model-based approach to collaborative recommendation which has proven very
successful recently, is the application of matrix factorisation approaches based on
singular value decomposition (SVD) and its variants. Recent work in [15, 18] has
suggested a robust factorisation strategy in which the clustering strategy of Sec-
tion 25.5.3.2 is used in conjunction with the training phase of the factorisation pro-
cedure. For example, the PLSA clustering strategy can be applied in conjunction
with the PLSA recommendation algorithm. In [15], it is proposed that after elimina-
tion of attack clusters, the Pr(zi|u) distribution of the remaining clusters should be
renormalised and the last few steps of training should be re-run, to maintain the pre-
dictive accuracy of the standard PLSA algorithm and significantly reduce prediction
shift.

Another strategy proposed in [18] is in the context of the application of General-
ized Hebbian Learning algorithm to compute a rank-1 SVD factorisation:

R≈ GH ,

where R is the rating matrix and G and H are matrices of rank 1. Again, the algorithm
is modified so that the contribution of the suspicious users towards the prediction
model is zero, once suspicious users have been identified. Results from this strategy
are reproduced in Figure 25.11 (right). The MAE for the attacked algorithm is shown
when the number of suspicious users r is set to the exact number of attack profiles
inserted, and when it is given a fixed value of 7% of the user base. Also shown for

830 Robin Burke, Michael P. O’Mahony and Neil J. Hurley

Fig. 25.11: Prediction shift vs attack size for an average attack at 5% filler for
segment recommendation (left). MAE on the attacked item vs attack size for filler
size of 10% using RMF (right).

reference is the MAE on the kNN algorithm and standard SVD, with and without
attack.

Theoretical results are also emerging to support the robustness of particular
classes of model-based algorithm. In [35], a manipulation-resistant class of collab-
orative filtering algorithm is proposed for which robustness is proved, in the sense
that the effect of any attack on the ratings provided to an end-user diminishes with
increasing number of products rated by the end-user. Here, effectiveness is measured
in terms of a measure of the average distortion introduced by the attack to the ratings
provided to the user. The class of algorithms for which the proof holds is referred to
as a linear probabilistic collaborative filtering. In essence, the system is modelled as
outputting a probability mass function (PMF) over the possible ratings and in linear
algorithms, the PMF of the attacked system can be written as a weighted sum of the
PMF obtained considering only genuine profiles and that obtained considering only
attack profiles. Robustness is obtained, because, as the user supplies more ratings,
the contribution of the genuine PMF to the overall PMF begins to dominate. The
authors show that, while nearest neighbour algorithms are not linear in this sense,
some well-known model-based algorithms such as the naive-bayes algorithm are
asymptotically linear.

25.6.3 Other Robust Recommendation Algorithms

Attack profiles are ineffective if they do not appear in the neighborhoods of authen-
tic users. By avoiding similarity as a criterion for neighbour selection, the recom-
mendation algorithm can be made robust to attacks where the attack profiles are
designed to have high similarity with authentic users. In [23] it is argued that the
goal of neighbour selection is to select the most useful neighbours on which to base

� � ��� � �� ��
�

���

�

���

�

���

�

�		
��
����
���

�
��
��
�	
��
�

�
��
�	

����
����
��
��

2 5 10
0

0.5

1

1.5

2

Attack Size (%)

M
A

E

SVD fixed r

SVD no attack

SVD exact r

SVD

kNN

25 Robust Collaborative Recommendation 831

the prediction. While similarity is one measure of usefulness, the notion of neigh-
bour utility can be extended to include other performance measures. A selection
criterion is proposed based on a notion of inverse popularity. It is shown that, with
this selection strategy, the same overall system performance in terms of MAE is
maintained. Moreover, cost-effective attacks that depend on popular items to build
highly influential profiles are rendered much less effective.

In [31], a robust algorithm is presented based on association rule mining. Con-
sidering each user profile as a transaction, it is possible to use the Apriori algorithm
to generate association rules for groups of commonly liked items. The support of
an item set X ⊂ I is the fraction of user profiles that contain this item set. An asso-
ciation rule is an expression of the form X ⇒ Y (σr,αr), where σr is the support of
X ∪Y and αr is the confidence for the rule, defined as σ(X ∪Y)/σ(X). The algo-
rithm finds a recommendation for a user u by searching for the highest confidence
association rules, such that X ⊆ Pu is a subset of the user profile and Y contains
some item i that is unrated by u. If there is not enough support for a particular item,
that item will never appear in any frequent item set and will never be recommended.
This algorithm proves robust to the average attack. For attack sizes below 15%, only
0.1% of users are recommended an attacked item by the association rule algorithm,
compared to 80− 100% of users for the kNN algorithm. The trade-off is that cov-
erage of the association rule algorithm is reduced in comparison to kNN. However,
the algorithm is not robust against the segment attack.

25.6.4 The Influence Limiter and Trust-based Recommendation

In [28, 29] a recommendation algorithm is presented for which robustness bounds
can be calculated. The algorithm introduces two key additional features to the rec-
ommendation process, an influence limiter and a reputation system. The idea behind
the algorithm is to weight the contribution of each user towards a prediction by using
a global measure of reputation. The reputation value is boosted when a profile cor-
rectly estimates a rating for a neighbor and is reduced which it fails to do so. Within
this recommendation model, the authors prove a non-manipulation result that shows
that any attack strategy involving up to n attack users, the negative impact due to
the attacker is bounded by a small amount. They also show that a user seeking to
maximize influence has a strict incentive to rate honestly. Other properties of this
algorithm, such as its accuracy, are still under study.

The influence limiter is just one algorithm that takes into account trust and rep-
utation (see Chapter 20) in order to build recommendations. In recent years, there
has been increasing focus on incorporating trust models into recommender systems
[14, 22, 9]. In [14], trust propagation is used to increase the coverage of recom-
mender systems while preserving accuracy. In [22] it is argued that the reliability
of a profile to deliver accurate recommendations in the past should be taken into
account by recommendation algorithms. An algorithm that uses trust as a means of
filtering profiles prior to recommendation so that only the top k most trustworthy

832 Robin Burke, Michael P. O’Mahony and Neil J. Hurley

profiles participate in the prediction process is presented in [9]. The trust associ-
ated with a user for making predictions for an item is computed based on the users’
accuracy on predicting their own ratings for that item. The robustness achieved by
such algorithms is a function of how difficult it would be for an attacker to become
trusted.

25.7 Conclusion

Collaborative recommender systems are meant to be adaptive – users add their pref-
erences to these system and their output changes accordingly. Robustness in this
context must mean something different than the classical computer science sense of
being able to continue functioning in the face of abnormalities or errors. Our goal is
to have systems that adapt, but that do not present an attractive target to the attacker.
An attacker wishing to bias the output of a robust recommender system would have
to make his attack sufficiently subtle that it does not trigger the suspicion of an at-
tack detector, sufficiently small that it does not stand out from the normal pattern of
new user enrollment, and sufficiently close to real user distribution patterns that it
is not susceptible to being separated out by dimensionality reduction. If this proves
a difficult target to hit and if the payoff for attacks can be sufficiently limited, the
attacker may not find the impact of his attack sufficiently large relative to the effort
required to produce it. This is the best one can hope for in an adversarial arena.

It is difficult to say how close we have come to this ideal. If an attacker is aware
that such detection strategies are being applied, then the attack can be modified to
avoid detection. For example, [23] shows that if the attacker is aware of the cri-
teria used to decide if an attack profiles exist in the user’s neighbourhood, then
the attacker can construct profiles which, although somewhat less effective than the
standard attacks, can circumvent detection. In [34] the effectiveness of various types
of attack profile obfuscation are evaluated. The general finding is that obfuscated at-
tacks are not much less effective than optimal ones and much harder to detect. More
research is needed in this area.

Similar issues apply in the context of attack resistant recommendation algo-
rithms. While model-based algorithms show robustness to attacks that are effective
on memory-based algorithms, it is possible to conceive of new attacks that target
model-based algorithms. [31], for example, shows that association rule based rec-
ommendation is vulnerable to segment attacks.

Another way to view the problem is as a game between system designer and
attacker. For each system that the designer creates, an optimal attack against it can be
formulated by the attacker, which then requires another response from the designer,
etc. What we would like to see is that there are diminishing returns for the attacker,
so that each iteration of defense makes attacking more expensive and less effective.
One benefit of a detection strategy is that a system with detection cannot be more
vulnerable to attack than the original system, since in the worst case, the attacks are
not detected. We do not yet know if the robust algorithms that have been proposed

25 Robust Collaborative Recommendation 833

such as RMF have some as-yet-undiscovered flaw that could make them vulnerable
to a sophisticated attack, perhaps even more vulnerable than the algorithms that they
replace.

Acknowledgements

Neil Hurley would like to acknowledge the support of Science Foundation Ireland,
grant number 08/SRC/I1407: Clique: Graph and Network Analysis Cluster. Michael
O’Mahony is supported by Science Foundation Ireland under grant 07/CE/I1147:
CLARITY: Centre for Sensor Web Technologies.

References

1. A.Williams, C., Mobasher, B., Burke, R.: Defending recommender systems: detection of pro-
file injection attacks. Service Oriented Computing and Applications pp. 157–170 (2007)

2. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for col-
laborative filtering. In Proceedings of the Fourteenth Annual Conference on Uncertainty in
Artificial Intelligence pp. 43–52 (1998)

3. Bryan, K., O’Mahony, M., Cunningham, P.: Unsupervised retrieval of attack profiles in col-
laborative recommender systems. In: RecSys ’08: Proceedings of the 2008 ACM confer-
ence on Recommender systems, pp. 155–162. ACM, New York, NY, USA (2008). DOI
http://doi.acm.org/10.1145/1454008.1454034

4. Burke, R., Mobasher, B., Bhaumik, R.: Limited knowledge shilling attacks in collaborative
filtering systems. In Proceedings of Workshop on Intelligent Techniques for Web Personal-
ization (ITWP’05) (2005)

5. Burke, R., Mobasher, B., Williams, C.: Classification features for attack detection in col-
laborative recommender systems. In: Proceedings of the 12th International Conference on
Knowledge Discovery and Data Mining, pp. 17–20 (2006)

6. Burke, R., Mobasher, B., Zabicki, R., Bhaumik, R.: Identifying attack models for secure rec-
ommendation. In: Beyond Personalization: A Workshop on the Next Generation of Recom-
mender Systems (2005)

7. Chirita, P.A., Nejdl, W., Zamfir, C.: Preventing shilling attacks in online recommender sys-
tems. In Proceedings of the ACM Workshop on Web Information and Data Management
(WIDM’2005) pp. 67–74 (2005)

8. Dellarocas, C.: Immunizing on–line reputation reporting systems against unfair ratings and
discriminatory behavior. In Proceedings of the 2nd ACM Conference on Electronic Com-
merce (EC’00) pp. 150–157 (2000)

9. Fug-uo, Z., Sheng-hua, X.: Analysis of trust-based e-commerce recommender systems under
recommendation attacks. In: ISDPE ’07: Proceedings of the The First International Sympo-
sium on Data, Privacy, and E-Commerce, pp. 385–390. IEEE Computer Society, Washington,
DC, USA (2007). DOI http://dx.doi.org/10.1109/ISDPE.2007.55

10. Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An algorithmic framework for performing
collaborative filtering. In Proceedings of the 22nd International ACM SIGIR Conference on
Research and Development in Information Retrieval pp. 230–237 (1999)

11. Hofmann, T.: Collaborative filtering via gaussian probabilistic latent semantic analysis. In:
SIGIR ’03: Proceedings of the 26th annual international ACM SIGIR conference on Research

834 Robin Burke, Michael P. O’Mahony and Neil J. Hurley

and development in informaion retrieval, pp. 259–266. ACM, New York, NY, USA (2003).
DOI http://doi.acm.org/10.1145/860435.860483

12. Lam, S.K., Riedl, J.: Shilling recommender systems for fun and profit. In Proceedings of the
13th International World Wide Web Conference pp. 393–402 (2004)

13. Macnaughton-Smith, P., Williams, W.T., Dale, M., Mockett, L.: Dissimilarity analysis – a
new technique of hierarchical sub–division. Nature 202, 1034–1035 (1964)

14. Massa, P., Avesani, P.: Trust-aware recommender systems. In: RecSys ’07: Proceedings of
the 2007 ACM conference on Recommender systems, pp. 17–24. ACM, New York, NY, USA
(2007). DOI http://doi.acm.org/10.1145/1297231.1297235

15. Mehta, B., Hofmann, T.: A survey of attack-resistant collaborative filtering algorithms. Bul-
letin of the Technical Committee on Data Engineering 31(2), 14–22 (2008). URL http:
//sites.computer.org/debull/A08June/mehta.pdf

16. Mehta, B., Hofmann, T., Fankhauser, P.: Lies and propaganda: Detecting spam users in col-
laborative filtering. In: Proceedings of the 12th international conference on Intelligent user
interfaces, pp. 14–21 (2007)

17. Mehta, B., Hofmann, T., Nejdl, W.: Robust collaborative filtering. In: RecSys ’07: Proceed-
ings of the 2007 ACM conference on Recommender systems, pp. 49–56. ACM, New York,
NY, USA (2007). DOI http://doi.acm.org/10.1145/1297231.1297240

18. Mehta, B., Nejdl, W.: Unsupervised strategies for shilling detection and robust collaborative
filtering. User Modeling and User-Adapted Interaction 19(1-2), 65–97 (2009). DOI http:
//dx.doi.org/10.1007/s11257-008-9050-4

19. Mobasher, B., Burke, R., Bhaumik, R., Williams, C.: Effective attack models for shilling
item-based collaborative filtering system. In Proceedings of the 2005 WebKDD Workshop
(KDD’2005) (2005)

20. Mobasher, B., Burke, R., Bhaumik, R., Williams, C.: Toward trustworthy recommender sys-
tems: An analysis of attack models and algorithm robustness. ACM Transactions on Internet
Technology 7(4) (2007)

21. Mobasher, B., Burke, R.D., Sandvig, J.J.: Model-based collaborative filtering as a defense
against profile injection attacks. In: AAAI. AAAI Press (2006)

22. O’Donovan, J., Smyth, B.: Is trust robust?: an analysis of trust-based recommendation. In: IUI
’06: Proceedings of the 11th international conference on Intelligent user interfaces, pp. 101–
108. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1111449.1111476

23. O’Mahony, M.P., Hurley, N.J., Silvestre, C.C.M.: An evaluation of neighbourhood formation
on the performance of collaborative filtering. Artificial Intelligence Review 21(1), 215–228
(2004)

24. O’Mahony, M.P., Hurley, N.J., Silvestre, G.C.M.: Promoting recommendations: An attack on
collaborative filtering. In: A. Hameurlain, R. Cicchetti, R. Traunmüller (eds.) DEXA, Lecture
Notes in Computer Science, vol. 2453, pp. 494–503. Springer (2002)

25. O’Mahony, M.P., Hurley, N.J., Silvestre, G.C.M.: An evaluation of the performance of col-
laborative filtering. In Proceedings of the 14th Irish International Conference on Artificial
Intelligence and Cognitive Science (AICS’03) pp. 164–168 (2003)

26. O’Mahony, M.P., Hurley, N.J., Silvestre, G.C.M.: Recommender systems: Attack types and
strategies. In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-
05) pp. 334–339 (2005)

27. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., J.Riedl: Grouplens: An open architecture
for collaborative filtering of netnews. In Proceedings of the ACM Conference on Computer
Supported Cooperative Work (CSCW’94) pp. 175–186 (1994)

28. Resnick, P., Sami, R.: The influence limiter: provably manipulation-resistant recommender
systems. In: RecSys ’07: Proceedings of the 2007 ACM conference on Recommender
systems, pp. 25–32. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/
1297231.1297236

29. Resnick, P., Sami, R.: The information cost of manipulation-resistance in recommender sys-
tems. In: RecSys ’08: Proceedings of the 2008 ACM conference on Recommender systems,

25 Robust Collaborative Recommendation 835

pp. 147–154. ACM, New York, NY, USA (2008). DOI http://doi.acm.org/10.1145/1454008.
1454033

30. Rokach, L.: Mining manufacturing data using genetic algorithm-based feature set decompo-
sition, Int. J. Intelligent Systems Technologies and Applications, 4(1):57-78 (2008).

31. Sandvig, J.J., Mobasher, B., Burke, R.: Robustness of collaborative recommendation based
on association rule mining. In: RecSys ’07: Proceedings of the 2007 ACM conference on
Recommender systems, pp. 105–112. ACM, New York, NY, USA (2007). DOI http://doi.
acm.org/10.1145/1297231.1297249

32. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item–based collaborative filtering recommen-
dation algorithms. In Proceedings of the Tenth International World Wide Web Conference
pp. 285–295 (2001)

33. Su, X.F., Zeng, H.J., Chen, Z.: Finding group shilling in recommendation system. In: WWW
’05: Special interest tracks and posters of the 14th international conference on World Wide
Web, pp. 960–961. ACM, New York, NY, USA (2005). DOI http://doi.acm.org/10.1145/
1062745.1062818

34. Williams, C., Mobasher, B., Burke, R., Bhaumik, R., Sandvig, J.: Detection of obfuscated
attacks in collaborative recommender systems. In Proceedings of the 17th European Confer-
ence on Artificial Intelligence (ECAI’06) (2006)

35. Yan, X., Roy, B.V.: Manipulation-resistnat collaborative filtering systems. In: RecSys ’09:
Proceedings of the 2009 ACM conference on Recommender systems. ACM, New York, NY,
USA (2009)

