
Submitted to the2nd International Workshop on .NET Technologies

XMLSpaces.NET: An Extensible Tuplespace
as XML Middleware

Robert Tolksdorf, Franziska Liebsch,Duc Minh Nguyen
Freie Universität Berlin, Inst. für Informatik, AG Netzbasierte Informationssysteme

Takustr. 9, D-14195 Berlin, Germany
research@robert-tolksdorf.de,franziska@adestiny.de,nguyen@inf.fu-berlin.de

ABSTRACT

XMLSpaces.NET implements the Linda concept as a
middleware for XML documents on the .NET platform.
It introduces an extended matching flexibility on nested
tuples and richer data types for fields, including objects
and XML documents. It is completely XML-based since
data, tuples and tuplespaces are seen as trees represented
as XML documents. XMLSpaces.NET is extensible in
that it supports a hierarchy of matching relations on tu-
ples and an open set of matching amongst data, docu-
ments and objects.

1 INTRODUCTION

According to [3], middleware for XML-centric appli-
cations can be classified as middleware that supports
XML-based applications – for example, a class library
providing an XML-parser –, as XML-based middleware
for applications – for example, a protocol suite that uses
XML-representation for messages –, or as completely
XML-based middleware – an example is the XML-based
XSL language which transforms XML documents.
XMLSpaces ([10, 11]) extends the Linda coordination
language by establishing a distributed shared space in
which XML documents are stored. A process, object,
component or agent contributing a result to the over-
all system will emit it as an XML document to the
XMLSpace. Here, it is stored until some other active
entity retrieves it. For retrieval, a template of a matching
XML document is given. The matching relations possi-
ble are manifold, currently, XMLQueries, textual simi-

c©-Notice

larity of XML documents and structural similarity wrt. a
DTD are supported.
XMLSpaces follows the Linda concept of uncoupled co-
ordination. Producers and consumers of information do
not have to reside at the same location. Also, they do
not need to have overlapping lifetimes in order to com-
municate and to synchronize. The producer can well ter-
minate after putting a document into the space while the
consumer does not even exist. The consumer can try to
retrieve a matching document while the producer has not
started to exist. This uncoupledness in space and time
makes the Linda concept attractive for open distributed
systems.
XMLSpaces adds to Linda expressibility by providing
a richer type of exchanged information. While Linda
deals only with tuples composed of a set of primitive
data types, XMLSpaces allows any well-formed XML
document in tuple fields. The set of matching relations
is not fixed but can be extended. The distribution and
replication schema implemented in XMLSpaces is well-
encapsulated and extensible.
XMLSpaces was implemented at TU Berlin on top of
Java using RMI. For the basic tuplespace functionality,
it relied on TSpaces, an IBM implementation of Linda
with small extensions. In addition, it implemented a set
of matching relations and a set of distribution strategies.
Following the above classification, XMLSpaces is mid-
dleware that supports XML-applications. In this paper,
we describe an evolution of XMLSpaces, called XML-
Spaces.NET which goes even further and tries to be a
self contained XML-middleware. The XMLSpaces.NET
project implements the XML-paces concept with high
quality on the .NET platform. It consists of two parts.
First, the implementation of an XMLSpaces kernel in C#
that includes the basic coordination mechanisms and the
specific XML support. Second, the implementation of a
distributed XMLSpaces on top of the .NET framework.
In this paper we describe the ideas for a complete XML-
representation for both tuples, subtuples and tuplespaces
in XMLSpaces.NET, its architecture and current imple-
mentation on the .NET platform.

1



2 TUPLESPACES IN XML

A generic middleware has to offer means to exchange
data, documents and objects among distributed applica-
tions. See [3] for a review of the historic distinction
between object- and document-oriented middleware.
XMLSpaces.NET provides an integrated representation
of data in standard Linda-tuples, objects from common
programming platforms and documents in XML repre-
sentation. The operations – following the Linda coor-
dination language – implemented in XMLSpaces.NET
become more powerful since they can be applied to all
three mentioned kinds of data of interest in a uniform
manner.

2.1 XML-based Tuplespaces

A standard Linda-tuple is a list of fields. Those fields
carry values from or denote some primitive types, usu-
ally from that of a host language. For richer structuring
of tuples, XMLSpaces.NET extends that basic notion by
allowing nested tuples. An XMLSpaces.NET-tuple thus
contains a sequence of fields or XMLSpaces.NET-tuples
and is actually a tree of a certain “depth” with primitive
data or objects as leaves. Such atupletreeis sufficient
to represent all our tuples, since fields cannot contain
references. The common Linda operations supported by
XMLSpaces.NET always manipulate a complete tuple at
a time, so the structure of an existing tupletree is never
changed or manipulated.
As mentioned above, we strive for a middleware that
supports data, documents and objects. A standard Linda-
tuple can be considered as data with fields being prim-
itives from some simple type-system. Lindas standard
matching scheme can be applied for such tuples. For
now, we leave the aspect of matching nested tuples open.
To support documents, we allow well-formed XML doc-
uments as tuple fields. The aforementioned XMLSpaces
already allowed for tuples that contained XML docu-
ments and offered a set of matching relations to select
tuples containing XML documents as fields, for exam-
ple by referencing a DTD to which a document in a field
had to comply. Furthermore, a tuple can contain an ob-
ject from some programming language – Java objects or
.NET objects are examples. Matching on them is object-
resp. class-specific.
Our aim is to design an integrated and self contained
XML-middleware. So far, we have talked about tu-
ples, primitive data, XML documents and objects. For
XMLSpaces.NET we have to find a uniform notion that
integrates these. The natural choice is, of course, to use
an XML representation for the tuples. A tuple (and a
nested tuple, too) is a tree with fields as leaves or nested
tuples as subtrees. It is obvious, that there can be an
XML representation for such tuples. XML documents
in fields are trees, since they are wellformed. Finally,
the objects that we want to support can also be consid-
ered as trees, at least there can be some tree - based se-
rialization of them. It is a reasonable assumption that
in a modern object system, one can generate an XML-

based serial representation which maps an object into an
XML-document.
With that XMLSpaces.NET takes the idea of an XML
based coordination medium a step further, since any tu-
ple in XMLSpaces.NET is an XML document. We can
go on to apply that principle to tuplespaces.
A tuplespace is a collection of tuples. In the case of
multiple or nested tuplespaces, it is a collection of tuples
and spaces. The tuplespaces are in any case also trees.
For XMLSpaces.NET, we consider a tuplespace as a col-
lection of XML documents as described. This collection
can be represented, in turn, as another tree similar to the
tupletree described. The tuplespace differs from tuples
in that it cannot contain fields as direct descendants of
the root node.
So – at least conceptually – XMLSpaces.NET consid-
ers the complete coordination medium as a single XML
document with the first level being the tuplespace (or
one or several levels in the case of multiple or nested
spaces) and the further levels being tuples and nested
tuples. The leaves of this one XML document are the
fields which are primitives, XML documents or XML
serializations of objects. This view is one contribution
of XMLSpaces.NET

2.2 Matching in XMLSpaces

Fields in Linda tuples are eitherformals – containing
only a type as in〈?int〉 – or actualscontaining a typed
value as in〈2〉. Tuples that contain formals are consid-
ered templates in Linda.
In XMLSpaces.NET an item used with tuplespace oper-
ations can be classified as a tuple or a template. A tuple
contains only actual fields or tuples as fields, like〈1,2〉
or 〈1,〈2,3〉〉. A template can also contain formal fields
or templates like〈1,?int〉 or 〈1,〈?int〉〉. The set of tuples
is a subset of templates.
We do not introduce the classification as typing in
XMLSpaces.NET, since this would require us to con-
sider either tuples as subtypes of templates (they are
more special in that they cannot contain formals), or vice
versa (templates are more special in that they can contain
formals). Thein andread operations expect something
that is classified as a template, an out something classi-
fied as a tuple. So the item〈1,2〉 is classified by itsuse
in an operation as a tuple or a template.
Matching in XMLSpaces.NET distinguishes actuals and
formals as in Linda. Any matching tuple and templates
must have the same length, that is the same number of
fields and subtuples or subtemplates.
We now distinguish two extreme kinds of matching
when considering subtuples.FlatTemplate-matching
performs matching only on the fields of the first level
of the tupletree. The content of fields containing primi-
tive data, XML documents or objects is not even tested
for equality or type-equivalence but only considered as
being of the metatype “tuplefield”. Similar, nested tu-
ples and templates are only considered as being of the
metatype “subtuple/subtemplate”. It suffices thatsome
(sub-)subtuple is present in a field, its structure and

Robert Tolksdorf, Franziska Lieb-
sch,Duc Minh Nguyen, March 21,
2004

2 .NET Technologies’2004



content is not considered further. In contrast to that,
DeepTemplate-matching performs a complete recursive
matching of the content of contained subtuples and tem-
plates considering type- and value-equivalence.
We write〈1,2〉D for a template that requires deep match-
ing and 〈1,2〉F for one with flat matching. A tuple
〈1,〈2〉,3〉 will be matched by a template〈1,〈2〉D,3〉D,
but not by 〈1,〈0.0〉D,3〉D. Deep matching is intu-
itively the standard Linda matching recursively applied
to nested tuples. Flat matching transforms the typing to
a metalevel. A flat template〈1,〈2〉F ,3〉F matches both
〈1,〈2〉,3〉 and〈1,〈0.0〉,4〉. The template is transformed
into 〈F,T,F〉, where F means field and T means tuple.
Flat and deep matching can be combined.〈1,〈2〉F ,3〉D
matches〈1,〈2〉,3〉 and〈1,〈0.0〉,3〉 but not〈1,〈0.0〉,4〉.
Finally, flat matching takes precedence over deep match-
ing. In a template〈1,〈2〉D,3〉F , the second field will
be transformed to the metatype T, overriding the deep
matching. This means that〈1,〈2〉F ,〈3〉D〉F is equal to
〈1,〈2〉F ,〈3〉F 〉F . We therefore make deepmatching the
default and require only the notation for flat matching if
necessary. So we write〈1,〈2〉F ,3〉D as〈1,〈2〉F ,3〉 and
〈1,〈2〉F ,〈3〉F 〉F as〈1,〈2〉,〈3〉〉F .
It turns out that there are further interesting relations be-
tween flat and deep matching. While flat matching ig-
nores all further characteristics of fields and subtuples,
flat/sizematching requires that subtuples must be of the
same size as the one given as template. Size is defined as
the sum of the number of fields and subtuples. We write
〈. . .〉FS for a template that requires this matching. The
template〈1,〈2〉FS ,3〉D matches〈1,〈0.0〉,3〉 but neither
〈1,〈2,3〉,3〉 nor 〈1,〈2,〈3〉〉,3〉.
The “metatyping” of fields can also be of interest. We
introduceflat/typematching for that case. Here, subtu-
ples must contain the same number of fields and subtu-
ples. We write〈. . .〉FT for that kind of matching. The
template〈1,〈2〉F ,3〉FT matches〈1,〈2〉,3〉 and〈〈1〉,2,3〉
but not〈〈1〉,〈2〉,3〉. As a further relation of interest, we
introduceflat/valuematching. Here, subtuples are not
considered further while fields have to have equal value.
We write〈. . .〉FV . The template〈1,〈2〉F ,3〉FV matches
〈1,〈0.0〉,3〉 but neither〈1,2,3〉 nor 〈0.0,〈2〉,3〉.
The relations mentioned are ordered, sinceD ⇒ FV ⇒
FT ⇒ FS ⇒ F . Further possible relations are cur-
rently under study. The differentiated and extensible
view on structural matching of nested tuples is one of
the contributions of XMLSpaces.NET.
Further matching is possible which combines the
relations above. In the current implementation
XMLSpaces.NET also supports a matching based on the
FV and FT relations. It checks for value- and type-
equivalence for fields on the first level of the tupletree,
but only for equal numbers of fields and subtuples in any
subtuples.
Three cases of field matching have to be distinguished
for which different matching relations are defined:
Primitive datacan be matched on type- and value equiv-
alence as in Linda. In addition, we foresee matching
relations like comparisons (〈≥ 5,≤ 3〉).

Objectsare matched on type and object equivalence. Ob-
ject equivalence is defined here by equal representation
of a normalized serialization. It is implemented by com-
paring the respective SOAP serializations of objects.
Type equivalence of objects and its use in matching is an
interesting topic and has led to several proposals in tu-
plespace research ([2, 8, 9] and others). Objects usually
are typed and classified. In most object oriented sys-
tems, there is a type- and class-hierarchy. With that, two
objects can be in several relations – they can be type
compatible if their interfaces are in a subtype relation or
can be specializations/generalizations if their classes are
in a sub-/superclass relation. The hierarchies mentioned
form trees. Again, we have a deep and a flat matching. A
template can reference a class or a type like〈?AClass〉F .
For flat matching, an object matching such a field has
to be an instance of that class or type like〈aObject〉.
Deep matching here means that matching objects are in-
stances of direct or indirect subclasses or subtypes like
〈bObject〉 if BClass is a subclass of AClass or the inter-
faces of the objects are in a subtype relation.
XML documentsare matched according to some further
matching relation since we lack a definition of normal-
ized equivalence of XML documents.
The flexible and extensible matching of values is another
contribution of XML-Spaces.NET.

3 ENGINEERING XMLSPACES

In this section we give an overview of the internal struc-
ture and architecture of XML-Spaces.NET.

3.1 Local operations

Constructing tuples, nested or not, should be as easy as
possible. As aforementioned, nested tuples have a tree-
structure, therefore it is easy to build a complex nested
tuple from the subtuples (subtrees). As Fig. 1(a) shows,
two classes with appropriate methods and constructors
are sufficient to describe nested tuples.
While nested tuples provide structure to what is put into
a tuplespace, fields contain the specific data. A field
should be capable of storing any type that is valid in a
host programming language that uses XMLSpaces.NET.
In addition XMLSpaces.NET adds XML-documents as
a valid type.
After creating tuples and writing them to a tuplespace
with an out, it is necessary to retrieve them. Linda speci-
fies two retrieval operations, a consuming (in) and a non-
consuming (read). To retrieve a tuple from a tuplespace,
a template is defined against which a tuple has to match.
If the template contains only values it acutally is a tuple.
As we have stated in Section 2, one can see Template as
a subclass of Tuple and vice versa. For an implementa-
tion, however, it is necessary to decide which approach
to take. We therefore define Template as a subclass of
Tuple, because apart from (actual) fields and tuples, a
template can contain templates and formal fields.
At least three groups of types can be stored in a field:
primitive types, objects and XML-documents (see Sec-

Robert Tolksdorf, Franziska Lieb-
sch,Duc Minh Nguyen, March 21,
2004

3 .NET Technologies’2004



Tuple Field

1 1..*

1

0..*

contains

contains

(a) Tuple and Field

XmlTemplate

FlatTemplate DeepTemplate

XmlTuple

+match(in object) : bool

«interface»
IMatchable

+match(in XmlDocument) : bool

«interface»
IXmlMatchable

1

0..*

1 0..*

«interface»
ITuple

implements co
nt

ai
n

s

1

0..*
contains

(b) Template

Figure 1: Tuples and Templates

tion 2.1). In our implementation we can join two groups,
primitive types and objects, since they are part of the
host programming language C#.
The definined matching-relations on the two remaining
groups (types of the host language and XML Docu-
ments) are totally different. Types of the host program-
ming language can be checked for their specific type and
value, using the programming language operations. The
document type of a wellformed XML-document is deter-
mined by its structure and its value by the values of the
tags, attributes and contained text. An XML-document
itself could have a structure and contents that is itself as
complex as a complete tuplespace. Matching relations
can be defined on different levels of granulation, i.e. an
XML-document’s structure or even values of a single
element or attribute. The most obvious way to define
matching relations is by using XPath-expressions. Al-
though XPath already offers a wide variety of matching-
relations, many more matching-relations can be imag-
ined, e.g. validation against XML-schema or XQuery.
To keep the creation and maintenance of matching-
relations flexible, we have define two interfaces, which
stand for one type of matching-relation each. This
approach allows the collection of matching-relations,
which is released, to be easily extended with user de-
fined ones.
With nested tuples, there are at least two different ways
of matching (see Section 2.2). XMLTemplate is de-
fined as an abstract class, that contains rules for com-
bination of Templates, Tuples, Fields and matching-
relations. Any subclass of XMLTemplate can be used
interchangeably. By defining a class that extends XML-
Template it is possible to extend the set of templates.
As we have observed in Sec. 2.2, there are many inter-
esting templates for nested tuples that should be real-
izable via an easy extension-mechanism. The matching-
algorithm should be able to decide which template to use
at runtime, so new templates are just defined and used in
matching without having to change existing code.

3.2 Remote Operation

Any active entity that emits tuples to or retrieves tuples
from a TupleSpace is considered to be a client. In order
to create and work on a tuplespace, a client needs a Tu-
pleSpace object. TupleSpace objects serve as references
to tuplespaces on a server. Clients may have many Tu-
pleSpace objects, of course. Apart from the traditional
Linda-operations (in, out, read, evala TupleSpace object
contains methods to log on or create tuplespaces and ma-
nipulate attributes that affect its behavior. Examples of
such planned attributes are timeouts, lease-time of ob-
jects etc.
The server manages the tuplespaces and the distribution
strategies. It has a collection of TupleBuckets, which
represent tuplespaces. Any TupleSpace object that a
client uses is associated exactly to one TupleBucket.
However, many TupleSpace objects may be associated to
the same bucket and thereby share the same tuplespace.
We plan to support three types of replication (none, full
and partial replication) as described in [10, 11].
In a system where the tuples are not replicated, all
servers manage their own tuplespaces only. If a client
writes a tuple to a tuplespace that is on the local server,
we have the non-distributed case and simply write (out)
the tuple to the tuplespace. If the target tuplespace is on a
remote server, aDistributor object forwards the tuple to
the server, which manages that tuplespace. Anin or read
is executed on the local server first and then performed
on remote servers, if the tuple or tuplespace can not be
found. This strategy is easy to implement and consumes
little resources compared to strategies with replication.
The counterpart to that strategy is the full replication
strategy. Every tuple is stored locally and on every re-
mote server. This brings about a lot of communication
and organization overhead among the servers, as with
every operation all servers have to be notified and their
tuplespaces must be changed according to the source
server. This strategy offers a high failsafety. The disad-
vantages, however, are potentially heavy network traffic
and a high consumption of resources.
Between these two extremes is the partial replication
strategy in order to gain the advantages of both. In a
system performing partial replication all servers are re-
garded as nodes in a rectangular grid. The grid is parti-
tioned into horizontal and vertical stripes, assigning each
node to exactly one intersection of stripes. Each horizon-
tal stripe is defined as anin-setand each vertical stripe
is defined as anout-set. Tuplespaces of nodes inin-sets
must be disjunct, whereas tuplespaces of nodes inout-
setsexact copies.
This limits all operations to only a subset of servers. All
in operations are performed on onein subsetof servers.
The advantage forout operations is that they are per-
formed on one out-set only. If a tuple is consumed or
added, only the nodes in thatout-setneed to be updated.
However, the number of participating servers should be
dynamic. This does not affect the non-replication and
the full replication strategy, but for the partial replication
strategy it is impossible to guarantee a rectangular grid
of nodes. To solve this problem simulated nodes were

Robert Tolksdorf, Franziska Lieb-
sch,Duc Minh Nguyen, March 21,
2004

4 .NET Technologies’2004



(a) The Grid of Nodes (b) Example of a simulated node

Figure 2: Intermediate Replication of Tuplespaces

introduced. Whenever the number of nodes is not suf-
ficient to form a rectangular grid, i.e. when new servers
want to participate in or leave the distributed tuplespace,
the neighbour in thein-setof such a “whole” in the grid
simulates its presence. As they are members of the same
in-setthey have exactly the same contents.
In addition to these issues, a distributed system perform-
ing any kind of replication must guarantee the integrity
of its data. Therefore all distributed operations must fol-
low a communication and operation protocol, which al-
lows locking and releasing of tuples and thereby guaran-
tee data integrity.

4 IMPLEMENTATION

We use Microsoft’s .NET Framework to implement
XMLSpaces.NET. It already features functionality we
need to implement the Linda-System and the extensions.
Languages like VB.NET, C++.NET, Python.NET were
extended to work with the .NET Framework. We choose
C# as the host language, as it is specially developed for
the .NET Framework. All languages, however, com-
pile to the Microsoft Intermediate Language (MSIL) and
there should be no significant difference in terms of per-
formance.
After XMLSpaces.NET is released, clients can be writ-
ten in any host language of the .NET Framework, as they
are capable of accessing the same assemblies.

4.1 Tuples

Tuples use the built-in .NET type Sys-
tem.Xml.XmlDocumentto represent their contents.
System.Xml.XmlDocumentis an implementation of the
W3C’s DOM and DOM2. It is therefore an in-memory
representation of an XML-Document with methods
for manipulation. In order to store data into XML,
we need a serialization pattern. Pattern in this context
means the XML-structure that represents the types. The
.NET Framework has a uniform type-system for all
host languages, called Common Type System (CTS).
Types are namedSystem.*, where * is any of the types

defined in .NET. Depending on the host language, the
available types may vary. For example, C# does not
support pointers so the Pointer- Types are not available
in C# but they exist in C++.NET. XMLSpaces.NET
is capable of handling all possible types, as the type-
information is extracted during runtime and stored in
the XML-document. On the other hand only clients that
know of those specific types (written in a host language
in which those types are available) will need to retrieve
tuples with such fields.
For these primitive types a serialization is found easily,
as we only need a string that represents the value. How-
ever, a string representing the value is ambiguous, since
”1” might be System.Int16, System.Int32, System.Int64,
System.Charor a System.String. We therefore need to
store the value’s type in order to deserialize it correctly.
The serialization for primitive datatypes is therefore:
<Field type=”System.*”>VALUESTRING</Field>.
Objects, in this context are instances of classes, arrays
or structs (container for structured data in C#). They are
serialized differently, of course. We could useReflection
to do the serialization to XML manually, but the .NET
Framework already features functionality that serializes
an object into a SOAP-document ([12]). Any other XML
serialization of objects can be used instead, of course.
The serialization for primitive datatypes is therefore:
<Field type=”Soap”>SOAPDOCUMENT</Field>. It
is possible to serialize primitive datatypes into SOAP-
documents as well, but we have chosen to serialize
into the indtroduced form, because the resulting SOAP-
document would be much larger and thus takes more
time for matching operations and occupies more mem-
ory.
XML-Documents do not need to be serial-
ized, as they can already be represented as
strings. The third serialization pattern is<Field
type=”XmlDocument”>XMLDOCUMENT</Field>.
The following is a simple example of a tuple containing
all three types:

<Tuple tuplecount="0" fieldcount="3">
<!-- primitive datatype -->
<Field type="System.String">Hello</Field>
<!-- serialized dateTime - object -->

Robert Tolksdorf, Franziska Lieb-
sch,Duc Minh Nguyen, March 21,
2004

5 .NET Technologies’2004



<Field type="Soap">
<SOAP-ENV:Envelope ... omitted ...

<SOAP-ENV:Body>
<xsd:dateTime id="ref-1">

<ticks>630720000000000</ticks>
</xsd:dateTime>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

</Field>
<!-- XML-document -->
<Field type="XmlDocument">

<Hello>World!</Hello>
</Field>

</Tuple>

The serialized data is stored in Fields, which represent
single units of data inside a tuple.

4.2 Templates

As we have stated in Section 3.1, we choose Template
to extend Tuple with functionality for matching. It is
obvious that we only need to make small modifications.
Apart from Tuples a Template may contain other
Templates and a field can be substituted by a matching-
relation. We implement two interfaces, which form
the basis for the extensibility of XMLSpaces.NET.
Their serialization is as follows: <Field
type=”IMatchable”>SOAPDOCUMENT</Field> and
<Field type=”IXMLMatchable”>SOAPDOCUMENT
</Field>.
We can determine if an object is an instance of a class
that implements one of those interfaces. Thereby we
differentiate two more types that are serialized in Tem-
plates, IMatchable and IXMLMatchable. The SOAP-
Formatter of the .NET Framework serializes those ob-
jects, which produces well-formed XML-documents.
Only in a template, instances of classes with these inter-
faces have to be handled separately, as they are needed
to perform the matching. In a Tuple templates and those
objects would be treated like any other object, allowing
even instances of matching-relations and templates to be
stored in the tuplespace and be exchanged among clients.
So far only matching-relations where investigated. How-
ever, we need an extensibility-mechanism for tem-
plates, too. It is necessary to store the type of the
template in the XML-representation. Any object in
C# has a fully qualified name as its type description,
e.g. XMLSpaces.Templates.DeepTemplate. We extend
the XML-representation of a tuple to contain XML-
elements, where the type attribute stores the fully qual-
ified name of the template. On one hand the resulting
XML-document contains all information that is needed
for matching and keeps the core implementation inde-
pendent from any extensions. On the other hand, there
is no limitation to the number of templates. In the cur-
rent implementation only matches on the XML-structure
are allowed. A later implementation might provide ad-
equate iterators on the XML-structure, allowing imple-
mentation of templates, that use the iterators instead of
the XML-structure to match tuples.

4.3 Extending Matching Relations

In C# any class or primitive data type is a sub-class
of object. We therefore define an interfaceIMatch-
ablewith a single methodbool matches(object o). Any
matching operation on objects, i.e. primitive data types
and instances of objects, can be defined using this in-
terface. This concept is much more powerful than the
Linda matching, which is either a type-match, or an ex-
act match of value. Our approach allows the definition
of finer relations. A string for example, can be matched
in many different ways. A few examples are to match
the string exactly, by ignoring the case of the letters, by
matching on a substring or its conformity to a regular
expression. Depending on the use of XMLSpaces.NET,
different matching-relations may be preferred.
XML-documents can be matched in a wide variety of
ways. There are existing standards such as XPath,
XPointer, XSLT and drafts for future standards like
XPath2 and XQuery. It is essential that the set of match-
ing relations for XML-documents is at least as extensible
as the set for objects and primitive types. We define the
interfaceIXMLMatchablefor that purpose. It contains
a single methodbool matches(XmlDocument doc). Any
matching-relation for XML Documents that is not part
of the basic set released with XMLSpaces.NET can be
defined by implementing this interface. If future devel-
opment of the .NET Framework integrates, for example,
XQuery (which it currently does not), or an API to an
existing XQuery system is available, it will be easy to
extend the matching-relations of the basic system with
that matching relation.

4.4 Matching

A tuplespace consists of a collection of tuples. Follow-
ing our concept, a tuplespace is a special form of a nested
tuple. It contains only tuples and no fields on the first
level. Again, we can represent the whole tuplespace as
an XML-document. From a higher level a tuplespace
can be considered as a tuple of an other tuplespace. This
makes it possible to store whole tuplespaces in another
and retrieve it at a later time as if it were a tuple.
Matching in XMLSpaces.NET (as in Linda) occurs only
on in andreadoperations. All arguments passed to them
are regarded as templates. Even if a tuple is passed to
these methods, a DeepTemplate is wrapped around it to
perform anactual match. As a tuplespace is an XML-
document, we can use XPath, which is implemented in
the .NET Framework, to perform a preselection (number
of fields and subtuples) of potentially matching tuples.
The server then checks if a tuple of that preselected set
matches on a given template. The sequence of actions is
shown in Fig. 3.
A client requests a tuple by callingin or read on the
TupleSpace object. The call is delegated to the server,
which does the preselection on the TupleBucket and per-
forms the match on the collection of potential matches.
The first matching tuple is returned to the TupleSpace
object and deleted from the TupleBucket. The other tu-

Robert Tolksdorf, Franziska Lieb-
sch,Duc Minh Nguyen, March 21,
2004

6 .NET Technologies’2004



ServerTupleSpaceClient

if match ->

TupleBucket

Tuple matching Template return the tuple

Template.match()

in(Template)

in(Template)

done

Collection of potential matches

findTuples

delete tuple in bucket

Figure 3: Matching

ples are left untouched. The TupleSpace returns either
the retrieved tuple to the client, or a null-reference.
The template determines to which depth (DeepTemplate,
FlatTemplate, etc.) a tuple is checked and how exact the
Fields of the tuple are examined. As stated in Sec. 2.2
there are many interesting types of templates that match
a tuple on a very high level (FlatTemplate), where only
the metatypes of fields and subtuples are checked, or on
a very low level (DeepTemplate), where a template has
to match exactly on the tuple. The matching-algorithm
traverses the DOM-tree of the XML-document and com-
pares the nodes. Depending on the template the fields
and depth are checked differently, so the algorithm has
to determine whether there are any nested templates and
switch to the algorithm of the nested template.
Whenever an IMatchable or IXMLMatchable object
is found in a template, it is deserialized and the
matches()method is called with the required param-
eter, i.e. System.objectfor IMatchable and Sys-
tem.Xml.XmlDocumentfor IXMLMatchable. If any field
does not match or any IMatchable or IXMLMatchable
object returns false, the algorithm terminates.
Every match operation performs following actions: a)
preselect a set of matching tuples on the bucket based
on their number of fields and subtuples, b) perform the
match method of the template on each tuple in the set of
potential matches.
Using the number of fields and tuples we can also decide
early whether to continue matching on deeper levels of
an XML-document or not. This information limits the
matching times on nested tuples as the number of fields
and tuples can be checked on any subtupletree.

4.5 Distribution

The .NET’sRemoting Frameworkis used to implement
the client-server architecture. Using a directory service,
such as Microsoft’sActive Directory[5] or OpenLDAP
[7], allows a dynamic configuration of the participating
servers and the replication mode, i.e. switching the repli-
cation mode of all servers during runtime.
However, on a campus networkActive Directory is
not always flexible enough, as theschemaof the
directory has to be modified to meet the needs of
XMLSpaces.NET. The schema change might require ad-
ministrative rights not available to an end-user. Open-
LDAP is an alternative in this case. We decided to stay as
independent as possible of those technical problems and

have implemented an extra class to maintain the server
list.
The distributed system differs from the non-distributed
one in the use of the buckets. While in a non-distributed
system the server directly calls methods on its local
buckets, a distributor object manages the calls to the lo-
cal buckets and the remote buckets. The implementation
of the distributed system profits from the XML structure
of the TupleBucket. If each tuple is assigned a unique
identifier pointing to its source location, a TupleBucket
is able to group those tuples in an XML subtree asso-
ciated to that remote source. This is beneficial for the
implementation of the replication as it is easy to sort out
tuples of different servers, since all tuples with the same
source server are under the same subtree. For anout op-
eration the Distributor inspects all servers in the server
list for their replication mode, adds the identifier to the
tuple and sends it to appropiate target servers, depend-
ing on the replication strategy, where they are stored to
a TupleBucket’s subtree according to its identifier.
For an in operation the identifier is ignored and the
search includes all tuples in the tuplespace. The removal
of a match is easy, as the tuple’s identifier points to the
correct subtree in each TupleBucket, in which the tuple
can be found and therefore speeds up the operation. The
XPath API allows a fast search on the XML structure of
the TupleBucket using the tuple’s identifier.
In case the replication mode changes, or a server dereg-
isters from the server list, the whole contents of the
server’s tuplespace can be easily removed by deleting the
subtree representing that server’s replicated tuplespace.
If the replication starts up, the contents of a TupleBucket
can be added as a subtree to a remote server’s Tuple-
Bucket.
In order to lock a tuple we simply add a boolean attribute
“locked” to the tuple’s XML root element. If an opera-
tion is being performed on the tuple the attribute has to
be set to “true” and else “false”. The .NET Framework’s
native support for XPath queries and the DOM2 make
this approach easy.

5 PERFORMANCE

We ran several performance tests on our system, a
2.40 GHz Pentium 4 with 512MB RAM running Mi-
crosoft Windows XP Pro and the Microsoft .NET Frame-
work 1.1. As there are many dependencies in the
XMLSpaces.NET system, we decided to explore the per-
formance along the following dimensions: 1) type of tu-
ple, i.e. tuples containing primitive data types, objects,
or XML documents 2) number of tuples in the tuple-
bucket 3) number of potentially matching tuples in the
bucket, i.e. tuples that have equal tuplecount and field-
count as the template or tuple we want to match against
For the implementation of the performance test we de-
signed some reference tuples, which contained 5 fields
with primitive data or 5 fields with an object each or 5
fields with an XML document each.
The tests were ran on buckets of size 500, 1000 and
2000. At the beginning of each test the corresponding

Robert Tolksdorf, Franziska Lieb-
sch,Duc Minh Nguyen, March 21,
2004

7 .NET Technologies’2004



number of tuples is randomly generated to fill the bucket.
The randomly generated tuples built from template fields
to make sure they have a determinable form. The tuples
only vary in the number of fields and their depth. At this
point we assumed two different probabilites on matching
tuples: In one experiment, we assumed that 25% of the
tuples in the bucket are potential matches, in the other,
we assumed 50% of potential matches.
No templates were used to retrieve tuples, as we intended
to measure the time taken for an exact match of tuples.
Owing to the recursive matching algorithm any match
against a template (using matching relations) is usually
faster since a template match only compares a fragment
of information an exact match does.
Using this testbed we had the system play “ping pong”
for each of the above defined type of tuples and got the
results shown in Figure 4. Two clients play “ping pong”
when each has a tuple the other is waiting for, i.e. one
client writes its tuple to the tuplespace and waits for the
tuple of the other client. The other client starts by wait-
ing for the tuple and writes its own tuple only after hav-
ing received the other client’s tuple etc.
The observations can be explained easily. A match took
longer the more potential matches were in the bucket, as
the algorithm tries to match against any of the potentially
matching tuples. In the worst case it is the last tuple (or
none) that matches the template-tuple.
Apart from the number of potential matches the time
elapsed for a match depends upon its type. As explained
earlier the serialization pattern for primitive types is rel-
atively compact and, except the type “string”, cannot
be very long. It is therefore easy to see that this type
of matching is the fastest. As objects are serialized to
SOAP-format XML documents they should be matched
in approximately the same time as equally large XML
documents. However, all objects that are represented in
the SOAP - format have a large root element in com-
mon, which identifies the SOAP version and Common
Language Runtime (CLR) the system is running on. If
many potentially matching tuples with objects are in the
bucket the overhead for comparing that root element is
relatively high. One possible optimization is to skip the
header and compare only the body of the SOAP enve-
lope. The consequenc is, however, that objects of sys-
tems running different CLR are identified as the same
object, even though they represent different ones.
The XML representation gives us some advantages. Us-
ing the attributestuplecountandfieldcountwe can make
a preselection with XPath. As in our two test scenarios
there are 50% or 25% of potentially matching tuples in
the tuple bucket, the preselection speeds the matching
algorithm up by the maximum factor of two or four.
Currently the matching algorithm is very simple and
compares each node in the XML representation of the tu-
ple to the template or the template-tuple. Further perfor-
mance improvement might be achieved if the matching
algorithm was to apply the preselection to each subnode.
Additionally one can think of an extended preselection
that uses the value of the current node. The result could
be an even smaller range of potentially matching tuples
and a faster matching algorithm.

Of course the performance improvement that is possi-
ble depends heavily on the implementation of the XPath
API. With an efficient implementation, though, one can
still expect further improvements.

6 RELATED WORK

There are several projects documented on extending
Linda-like systems with XML documents. However,
XMLSpaces seems to be unique in its support for multi-
ple matching relations and its extensibility.
MARS-X [1] is an implementation of an extended
JavaSpaces [4] interface. Tuples are represented as
Java-objects where instance variables correspond to tu-
ple fields. Such an tuple-object can be externally rep-
resented as an element within an XML document. Its
representation has to validate towards a tuple-specific
DTD. MARS-X closely relates tuples and Java objects
and does not look at arbitrary relations amongst XML
documents.
XSet [14] is an XML database which also incorpo-
rates a special matching relation amongst XML docu-
ments. Here, queries are XML documents themselves
and match any other XML document whose tag struc-
ture is a strict superset of that of the query. It should be
simple to extend XMLSpaces with this engine.
[6] describes a preversion for an “XML-Spaces”. How-
ever, it provides merely an XML based encoding of tu-
ples and Linda-operations with no significant extension.
Apparently, the proposed project was never finished.
TSpaces has some XML support built in [13]. Here, tu-
ple fields can contain XML documents which are DOM-
objects generated from strings. Thescan-operation pro-
vided by TSpaces can take an XQL query and returns
all tuples that contain a field with an XML document in
which one or more nodes match the XQL query. This ig-
nores the field structure and does not follow the original
Linda definition of the matching relation. Also, there is
no flexibility for further relations on XML documents.

7 SUMMARY AND OUTLOOK

With the XMLSpaces.NET conception we have devel-
oped a very extensible XML-based middleware. The fur-
ther work is on finalizing the set of supported matching
relations. The challenge here is to find a set of practi-
cally useful relations amongst the wide variety of pos-
sible combinations. Also, comparisons like〈≥ 5,≤ 3〉
have to be carefully limited not to deadlock the selection
of matches.
As mentioned in the beginning, the XMLSpaces.NET
project consists of two parts. The XMLSpaces.NET ker-
nel in C# and the distribution of the kernel itself by ap-
plying mechanisms like replication etc. Part of the re-
search on distribution will be to explore possibilities to
support detachment of parts of a tuplespace for trans-
portation and manipulation by mobile devices.
Furthermore, we will explore to what extend we can eas-
ily incorporated further functionalities like secure spaces

Robert Tolksdorf, Franziska Lieb-
sch,Duc Minh Nguyen, March 21,
2004

8 .NET Technologies’2004



25 % potential matches

11
,9

6

24
,9

0

36
,5

0

93
8,

4
4

21
48

,0
6

45
23

,6
0

25
7,

0
9

27
7,

3
3

30
8,

7
8

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

3500,00

4000,00

4500,00

5000,00

pr
im

itiv
e 

50
0

pr
im

itiv
e 

10
00

pr
im

itiv
e 

20
00

ob
ject 

500

ob
ject 

100
0

ob
ject 

200
0

xm
ldo

c 5
00

xm
ldo

c 1
00

0

xm
ldo

c 2
00

0

m
s

(a) 25% potential matches

50% potential matches

13
,5

3

25
,4

7

53
,5

6

21
64

,5
6

43
09

,7
2

90
20

,2
8

27
3,

9
0

28
6,

1
3

32
2,

3
0

0,00

1000,00

2000,00

3000,00

4000,00

5000,00

6000,00

7000,00

8000,00

9000,00

10000,00

pr
im

itiv
e 

50
0

pr
im

itiv
e 

10
00

pr
im

itiv
e 

20
00

ob
ject 

500

ob
ject 

100
0

ob
ject 

200
0

xm
ldo

c 5
00

xm
ldo

c 1
00

0

xm
ldo

c 2
00

0

m
s

(b) 50% potential matches

Figure 4: Performance

by the adoption of the respective XML technologies. We
hope that such extensions are quite seamless.
In conclusion, XMLSpaces.NET is a flexible XML-
based middleware founded on the tuplespace principles.
The main contributions are the integrated view on data,
documents and objects, the support for structural match-
ing, the extensibility and flexibility of match mecha-
nisms and consequent usage of XML technologies.
Acknowledgment XMLSpaces.NET is funded under
contract 2003-144 by Microsoft Research Cambridge.

REFERENCES

[1] G. Cabri, L. Leonardi, and F. Zambonelli. XML
Dataspaces for Mobile Agent Coordination. In
15th ACM Symposium on Applied Computing,
pages 181–188. ACM Press, 2000.

[2] C. J. Callsen, I. Cheng, and P. L. Hagen. The auc
c++ linda system. In G. Wilson, editor,Linda-Like
Systems and Their Implementation, pages 39–73.
Edinburgh Parallel Computing Centre, 1991. Tech-
nical Report 91-13.

[3] P. Ciancarini, R. Tolksdorf, and F. Zambonelli. Co-
ordination Middleware for XML-centric Applica-
tions. Knowledge Engineering Review, 2002. to
appear.

[4] E. Freeman, S. Hupfer, and K. Arnold.JavaSpaces
principles, patterns, and practice. Addison-Wes-
ley, Reading, MA, USA, 1999.

[5] Mircosoft. Active Directory, 2004. http://
www.microsoft.com/windows2000/technologies/
directory/ad/defau% lt.asp.

[6] D. Moffat. XML-Tuples and XML-Spaces, V0.7.
http://uncled.oit.unc.edu/XML/XMLSpaces.html,
last seen May 6, 2002, Mar 1999.

[7] OpenLDAP Community. Openldap. Website,
2004. http://www.openldap.org.

[8] A. Polze. The object space approach: decoupled
communication in c++. InProceedings of TOOLS
USA’93, pages 195–204, 1993.

[9] R. Tolksdorf. Laura: A coordination language
for open distributed systems. InProceedings of
the 13th IEEE International Conference on Dis-
tributed Computing Systems ICDCS 93, pages 39–
46, 1993.

[10] R. Tolksdorf and D. Glaubitz. Coordinating Web-
based Systems with Documents in XMLSpaces.
In Proceedings of the Sixth IFCIS International
Conference on Cooperative Information Systems
(CoopIS 2001), number LNCS 2172, pages 356–
370. Springer Verlag, 2001.

[11] R. Tolksdorf and D. Glaubitz. XMLSpaces for Co-
ordination in Web-based Systems. InProceedings
of the Tenth IEEE International Workshops on En-
abling Technologies: Infrastructure for Collabora-
tive Enterprises WET ICE 2001. IEEE Computer
Society, Press, 2001.

[12] World Wide Web Consortium. Simple Object Ac-
cess Protocol (SOAP) 1.1. W3C note for public
discussion, 2000. http://www.w3.org/TR/SOAP/.

[13] P. Wyckoff, S. McLaughry, T. Lehman, and
D. Ford. T Spaces. IBM Systems Journal,
37(3):454–474, 1998.

[14] B. Y. Zhao and A. Joseph. The XSet XML
Search Engine and XBench XML Query Bench-
mark. Technical Report UCB/CSD-00-1112, Com-
puter Science Division (EECS), University of Cal-
ifornia, Berkeley, 2000. September.

Robert Tolksdorf, Franziska Lieb-
sch,Duc Minh Nguyen, March 21,
2004

9 .NET Technologies’2004


