

Netzprogrammierung Weitere Modelle der Netzprogrammierung

Prof. Dr.-Ing. Robert Tolksdorf Freie Universität Berlin Institut für Informatik Netzbasierte Informationssysteme

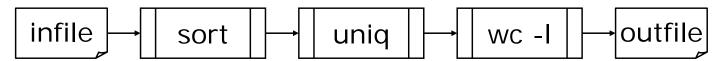
mailto: tolk@inf.fu-berlin.de http://www.robert-tolksdorf.de

Überblick

- 1. Schwächen des RPC-Konzepts
- 2. Koordinationssprachen
- 3. Agenten

Schwächen des RPC Konzepts

RPC



- RPC ist
 - sehr populär
 - weit übertragbar
 - implementierbar
- Aber:
 - RPC ist nicht abschließende Lösung
- [Tanenbaum/vanRenesse88] diskutieren einige der Probleme

Konzeptionelle Probleme

- Problem: Rollenidentifikation als Klient oder Server
 - sort < infile | uniq | wc -l > outfile

- Wer liest, wer schreibt, wer betreibt die Berechnung?
 - fordert wc Zeilen vom uniq Prozess an?
 - fordert uniq den wc Prozess zur Weiterverarbeitung auf?
- Problem: Rollenwechsel in der Interaktion
 - Änderungsbenachrichtigungen an Klienten
 - Klienten sind dann auch Server
 - Signale des Klienten an Server
- Problem: Mehrparteieninteraktionen
 - Datenverteilung an mehrere Server

Weitere Probleme

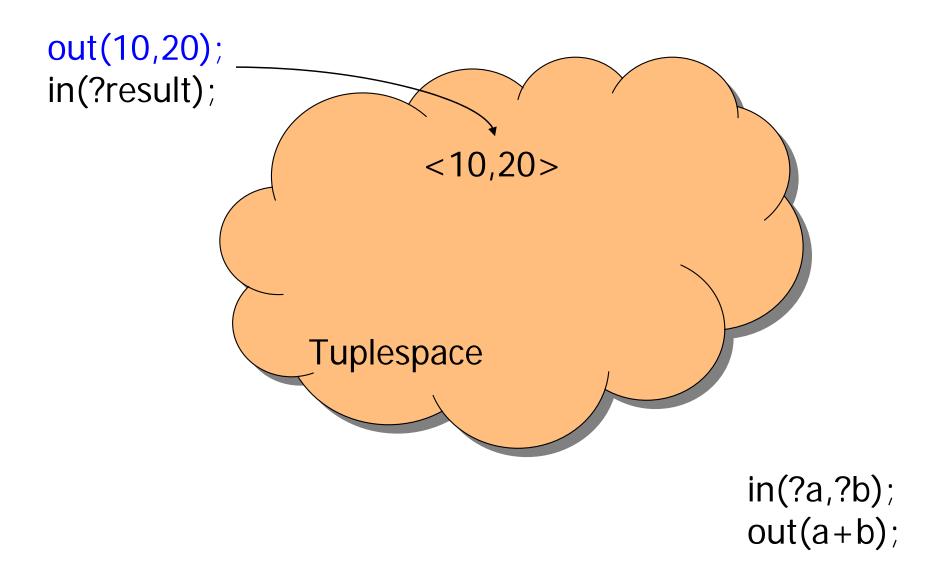
- Transparenz bei Parametern
 - Zeiger
 - Globale Variablen
- Fehler
 - Server hat Fehler -> Klient blockiert
 - Klient hat Fehler -> Server steht alleine
 - Exactly-Once-Semantik schwer zu etablieren -> I/O
- Nebenläufigkeit
 - Blockierter Klient beim Aufruf (bei synchronem RPC)
 - Partielle Ergebnisse k\u00f6nnen nicht zur Weiterverarbeitung abgeliefert werden (z.B. bei Datenbankanfrage)

Alternativen zu RPC

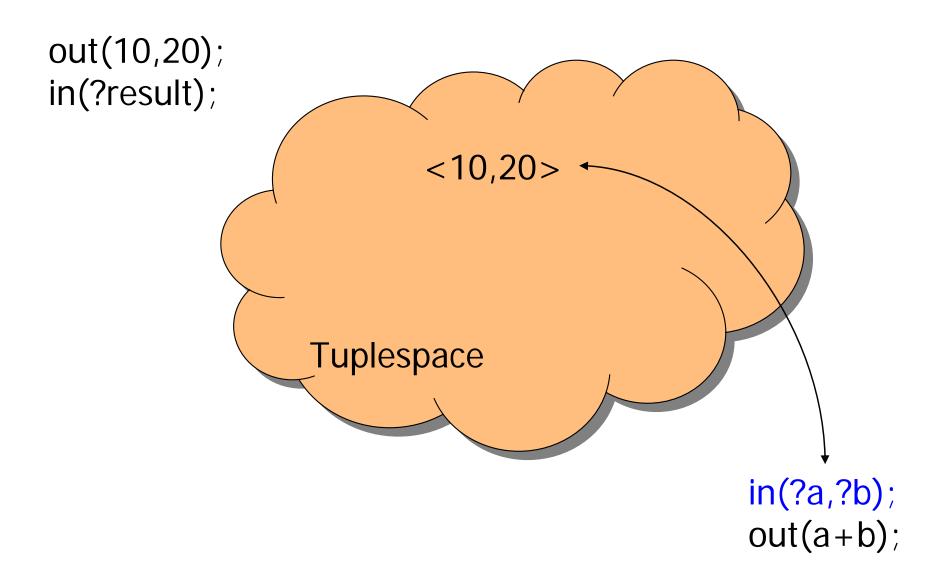
- Neben dem RPC Konzept gibt es weitere Versuche, andere Interaktionsmodelle für Netzprogrammierung zu bilden
 - Koordinationssprachen: Tupelraum
 - Peer-to-Peer: Freie Rollen
 - Agenten: Autonome Komponenten

Koordinationssprachen

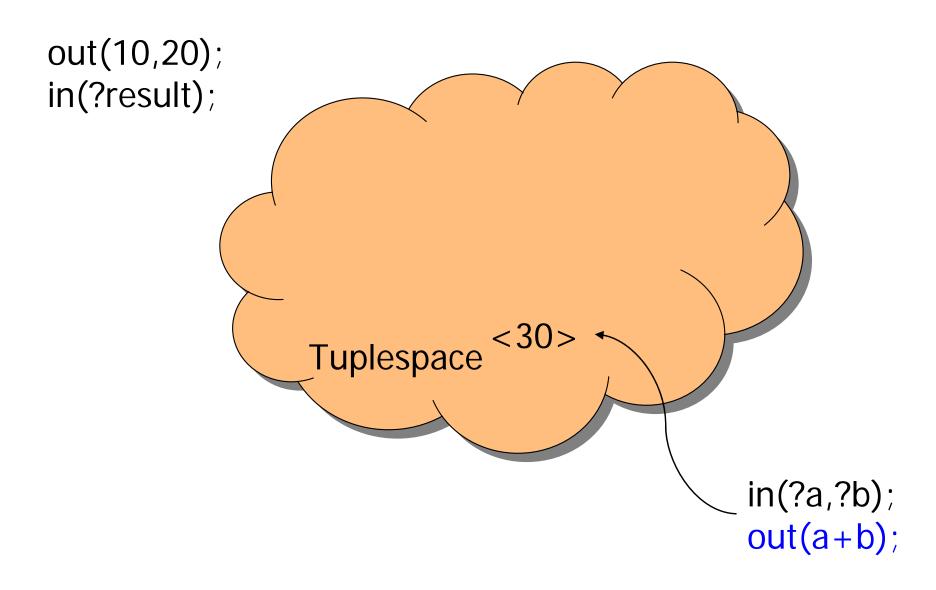
Koordinationssprachen

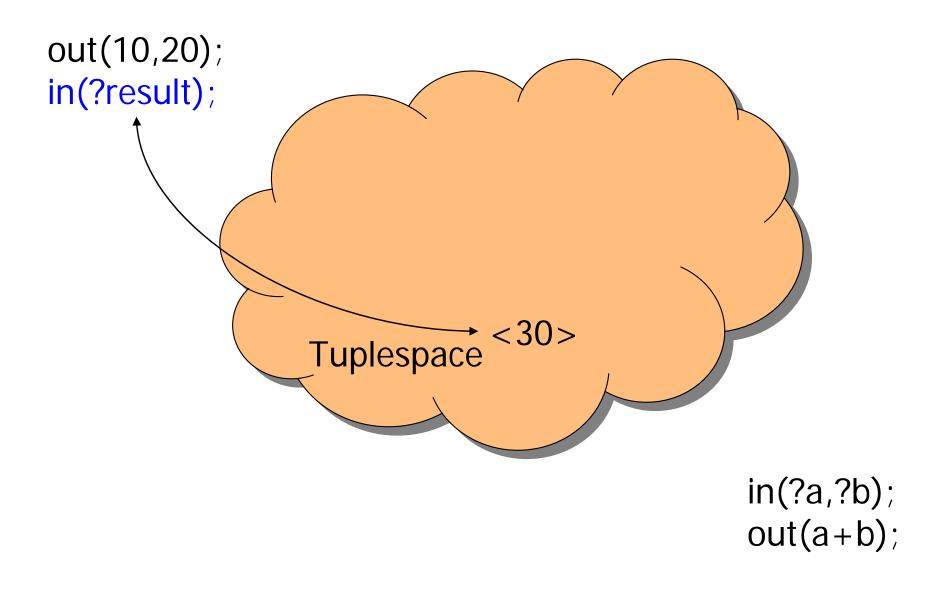

- Haben ihren Ursprung in der parallelen Programmierung mit der Sprache Linda
- Sind für netzbasierte Systeme ebenfalls anwendbar
- Haben sich dort zu einer Alternative zu RPC Modellen etabliert
- Sind teilweise kommerziell anerkannt
 - JavaSpaces, Sun
 - TSpaces, IBM

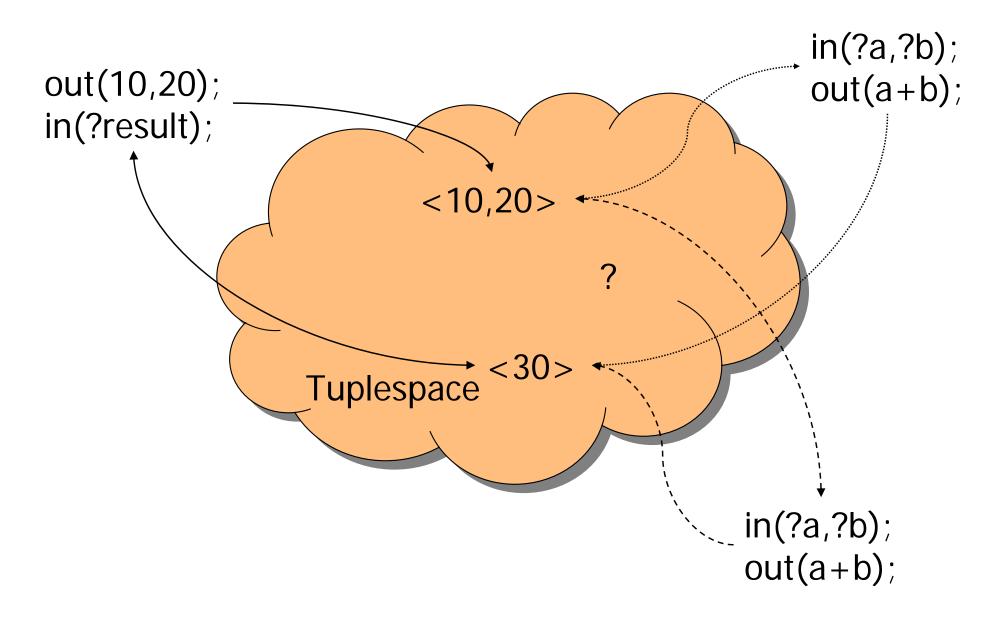
Koordinationssprachen



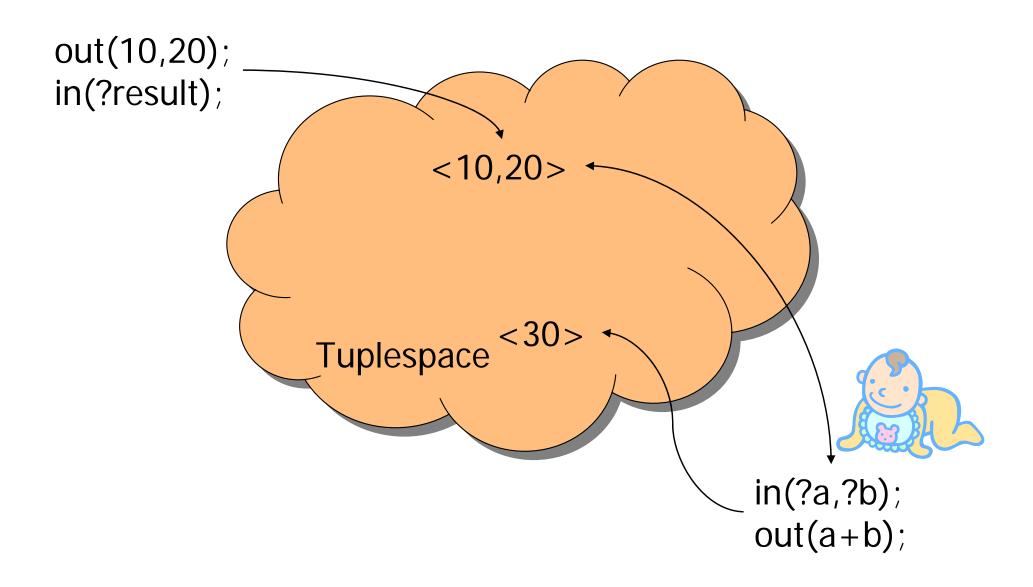
- Haupteigenschaften
 - Kommunikationspartner sind anonym zueinander
 - Lebensdauer der Kommunikationspartner muss nicht überlappen / Kommunikation ist asynchron
 - Entitäten kommunizieren nur indirekt über einen gemeinsamen Datenraum (Tuplespace)
 - Mehrparteienkommunikation möglich
 - Inhärent nebenläufig
 - Abstrahiert völlig von Orten der Teilnehmer
 - -> verteiltes Modell für Netzprogrammierung
- Hauptproblem: Skalierbarkeit

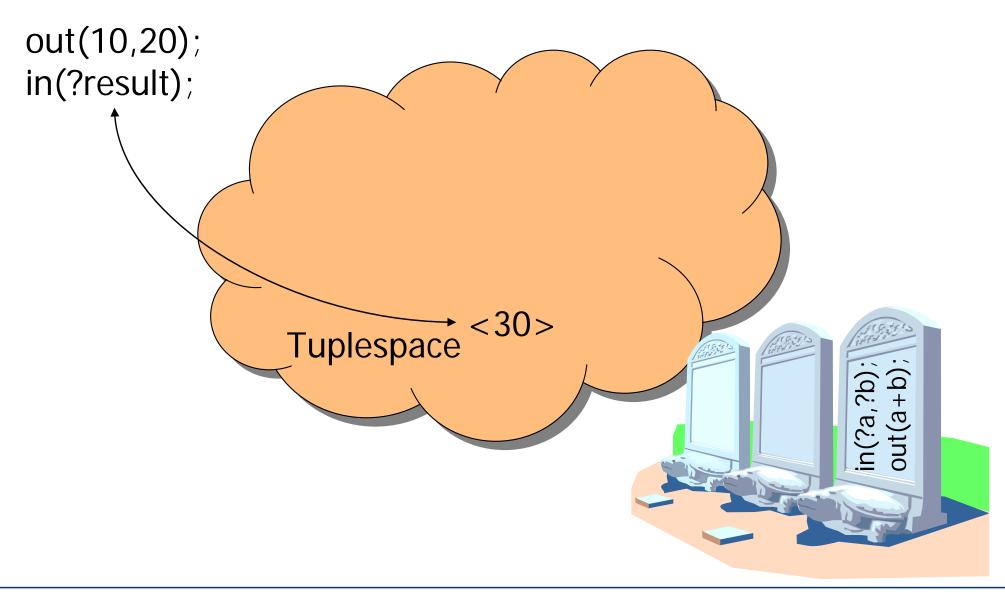


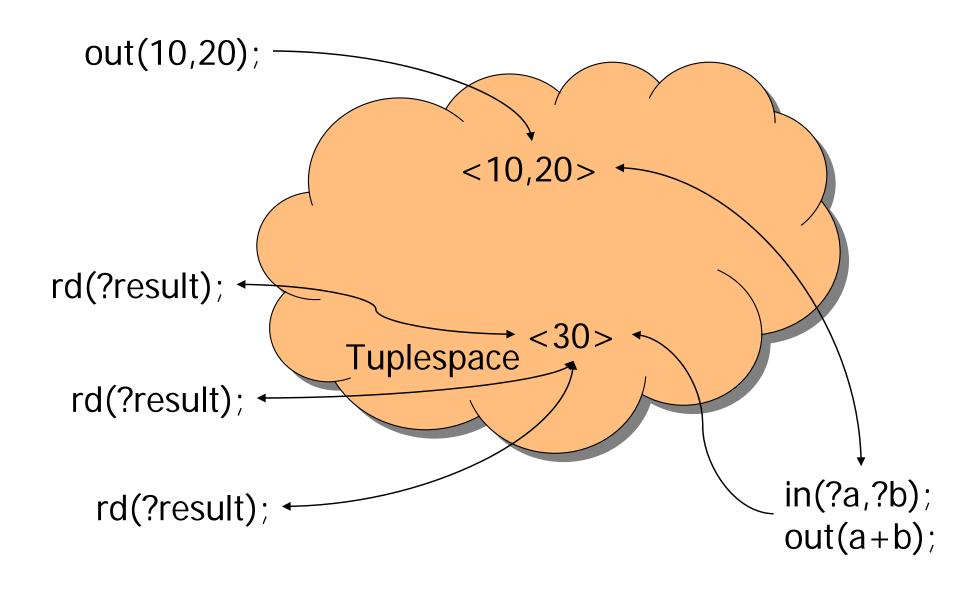





Anonyme Interaktion




Unterschiedliche Lebensdauer


Unterschiedliche Lebensdauer

Mehrparteieninteraktion

Operationen

- out(tuple): Ablegen eines Tupels in den Tuplespace
- in(template): Herausnehmen eines passenden Tupels aus dem Tuplespace
 - Blockiert bis passendes Tupel vorliegt
 - Gleiche Anzahl Felder
 - Gleiche Typen der Felder
 - Gleicher Wert falls vorhanden
 - Zu <1,2,"start"> passen
 - <?int, ?int, ?string>
 - <1, ?int, ?string>
 - <1,2,"start">

aber nicht

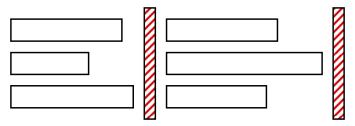
- <?int, ?int>
- <?int, ?string, ?int>
- <10, ?int, ?string>
- <1,2,3>

Operationen

- rd(template):
 Auslesen eines passenden Tupels aus dem Tuplespace
 - Nur Kopie, Tupel bleibt erhalten
 - Konkurrenz mit anderen passenden out
- eval(f()): Evaluation von f() parallel zum laufeden Prozess, Ergebnis als Tuple in Tuplespace
 - P:eval(f()); q... ähnlich (out(f()))||q...

Programmiermuster mit Linda

- Etwas von einem anderen Prozess ausführen lassen:
 - Worker/"Server":


```
in("Rechendienst",?p1,?p2);
r=f(p1,p2);
out("RechendienstErg",r);
```

- "Client"
 - out("Rechendienst",10,30); in("RechendienstErg",?r);
- Es kann beliebig viele Worker geben:
 Bag-of-tasks replicated-worker Muster
 - Aufgabe wird an einen Worker nichtdeterministisch vergeben
 - System kann Last ausgleichen
 - Bei mehreren "Klienten" muss Auftrag durch ID unterschieden werden

Programmiermuster mit Linda

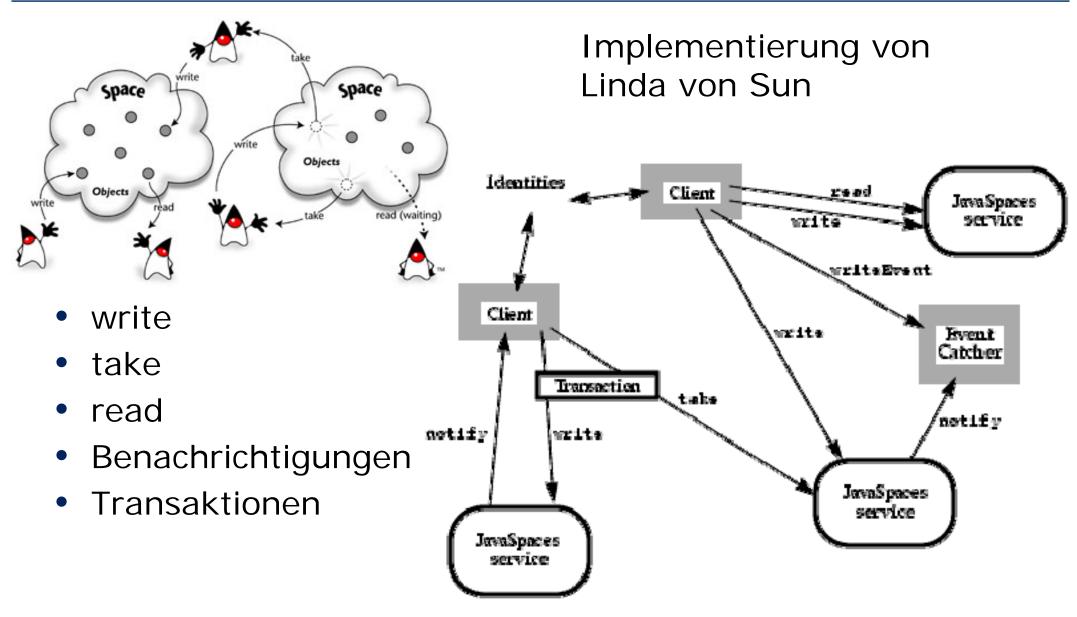
- Verteilte Semaphore
 - V-Operation: out("sem")
 - P-Operation: in ("sem")
 - Initialisierung: out("sem") n Mal wiederholen
- Barrier Synchroniziation (Schrankensynchronisation)

- Schranke b1 erzeugen auf die 3 Prozesse warten sollen
 - out("b1",3)
- Jeder Prozess dekrementiert und wartet auf das "Eintreffen" aller Prozesse:
 - in("b1",?v); out("b1",?v-1); rd("b1",0);

- Verteilte Schliefe
 - for (loop control) (something)
 - Wenn eval Prozesse auf unterschiedlichen Maschinen platziert:

```
    for (loop control)
        eval("loop", something());
        for (loop control)
        in ("loop", 1);
```

something() endet mit out("loop", 1);


Probleme

- Fehlertransparenz
 - Was passiert bei Fehler zwischen in(?a,?b); und out(a+b);?
- Termination von Interaktionen
 - Was passiert mit dem <30> Tupel, wenn alle interessierten Prozesse rd(?result); gemacht haben?
- Skalierbarkeit
 - Wie verteilt man den Tuplespace effizient?

JavaSpaces

Beispiel Entry Objekt

```
package jsbook.chapter1.helloWorldTwo;
import net.jini.core.entry.Entry;
public class Message implements Entry {
  public String content;
  public Integer counter;
  public Message() { }
  public Message(String content, int initVal) {
     this.content = content;
     counter = new Integer(initVal);
  public String toString() {
     return content + " read " + counter + " times.";
  public void increment() {
     counter = new Integer(counter.intValue() + 1);
```



```
package jsbook.chapter1.helloWorldTwo;
import jsbook.util.SpaceAccessor;
import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
public class HelloWorldClient {
  public static void main(String[] args) {
     try {
        JavaSpace space = SpaceAccessor.getSpace();
        Message template = new Message();
        for (;;) {
           Message result = (Message)
             space.take(template, null, Long.MAX_VALUE);
          result.increment();
          space.write(result, null, Lease.FOREVER);
           Thread.sleep(1000);
     } catch (Exception e) {
        e.printStackTrace();
```



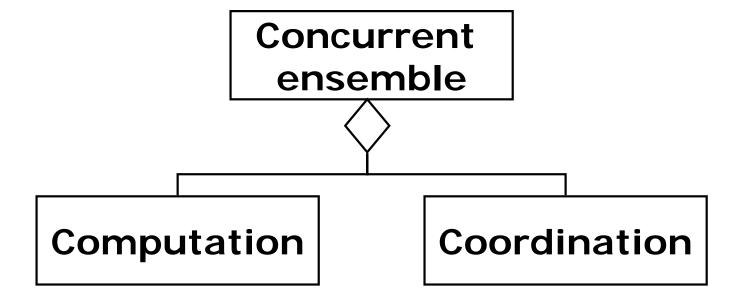
```
package jsbook.chapter1.helloWorldTwo;
import jsbook.util.SpaceAccessor;
import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
public class HelloWorld {
  public static void main(String[] args) {
     try {
        Message msg = new Message("Hello World", 0);
        JavaSpace space = SpaceAccessor.getSpace();
        space.write(msg, null, Lease.FOREVER);
        Message template = new Message();
        for (;;) {
          Message result = (Message)
             space.read(template, null, Long.MAX_VALUE);
          System.out.println(result);
           Thread.sleep(1000);
     } catch (Exception e) {
        e.printStackTrace();
```


Coordinating Web-based Systems with Documents in XMLSpaces

Beiträge von Dirk Glaubitz

Motivation: Coordination and the Web

- Web has become the universal information system
- Not many distributed applications utilizing the Web for universal access
- Core question: What is the concept applied for the coordination of independent activities in a cooperative whole?
- XMLSpaces follows idea of separate coordination language that deals exclusively with the aspects of the interplay of entities and provides concepts orthogonal to computation.


Coordination Languages

Coordination theory [Malone, others]:

Coordination is the management of dependencies between activities

Coordination technology [Gelernter/Carriero]:

Linda

 Coordination language with tuplespace accessed with few operations: out, in/rd, inp/rdp, eval

```
out(<2000, "Eilat">)out(<2001, "Trento">)
```

- in(<2001,?town)
 Matching relation determines result
- in(<2002,?town)
 Blocks until someone out 's a match sometimes
- Linda is good for Web based systems:
 Uncoupled in space and time, asynchronous, anonymous...

Motivation: Coordination and the Web

- Tupels are weak in expressibilty
 - Fixed typing
 - No higher order structures
 - "small"
- Extensible Markup Language XML has become the format to exchange data markup following application specific syntaxis
- XMLSpaces =
 common communication format XML +
 coordination language Linda

Motivation: Coordination and the Web

- Features:
 - XML documents serve as field-data
 - Multitude of relations amongst XML docs for matching
 - XMLSpaces is distributed, servers at different locations form one logic dataspace.
 - Distributed events supported so that clients are notified when a tuple is added or removed somewhere

XML documents serve as field-data

```
<?xml version="1.0"?>
  <!DOCTYPE address SYSTEM</p>
             "address.dtd">
  <location>
   <city name="Trento"/>
   <host>FACOLTÀ DI ECONOMIA</host>
   <street name="Via Vigilio Inama"
        no="5"/>
  </location>
<2001,</li>
```

How to match?

- A formal is an object describing an XML document
- Can be:
 - Another document:

- Something else
 in(2001, DOCTYPE="address.dtd")
- There is a variety of relations that identify XML documents

Multiple matching relations in XMLSpaces

Relation Meaning Tool used

Exact equality Exact textual equality DOM interfaces

Restricted Textual equality ignoring

equality comments, PIs, etc. DOM interfaces

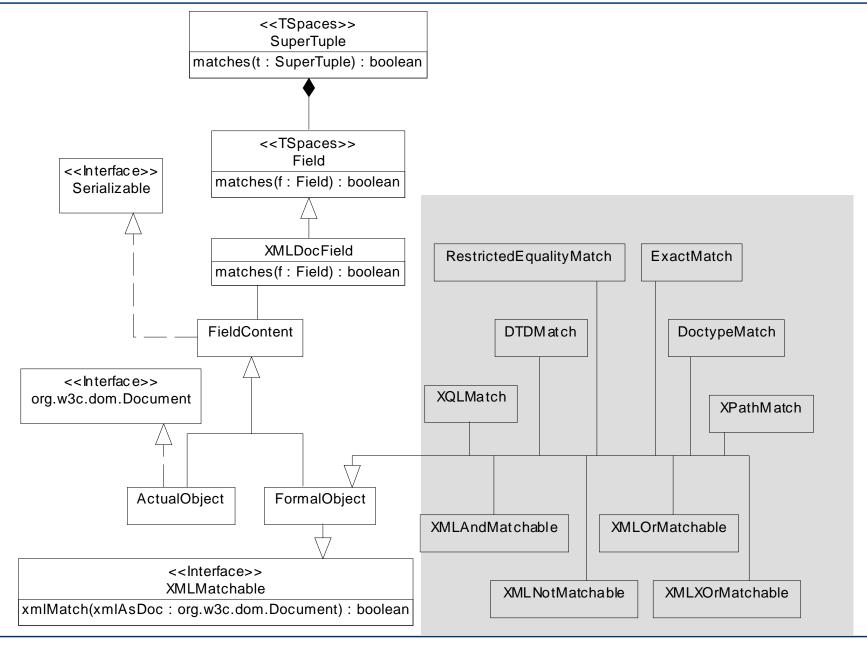
DTD Valid towards a DTD XML4J

DOCTYPE Uses specific Doctype name DOM

XPath Fulfills an XPath expression Xalan-Java

XQL Fulfills an XQL expression GMD-IPSI XQL

AND Fulfills two matching relations –


NOT Does not fulfill matching relation –

OR Fulfills one or two matching relations –

XOR Fulfills one matching relation –

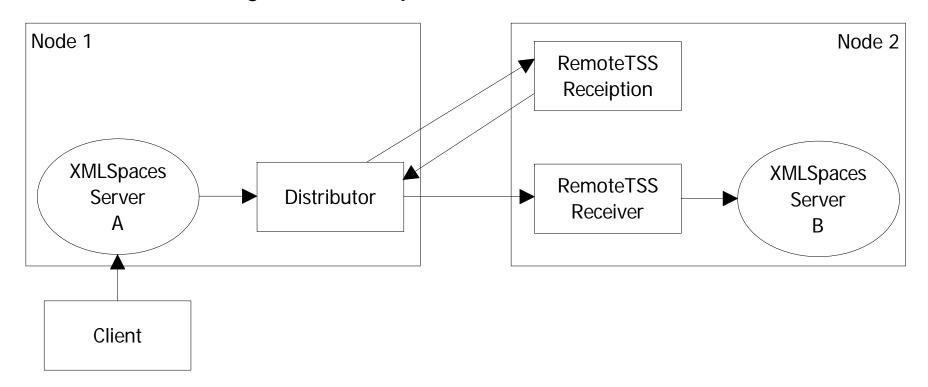
Class hierarchy for XML tuplefields

Openness

- Further relations can be added easily
- Example from XQL integration:

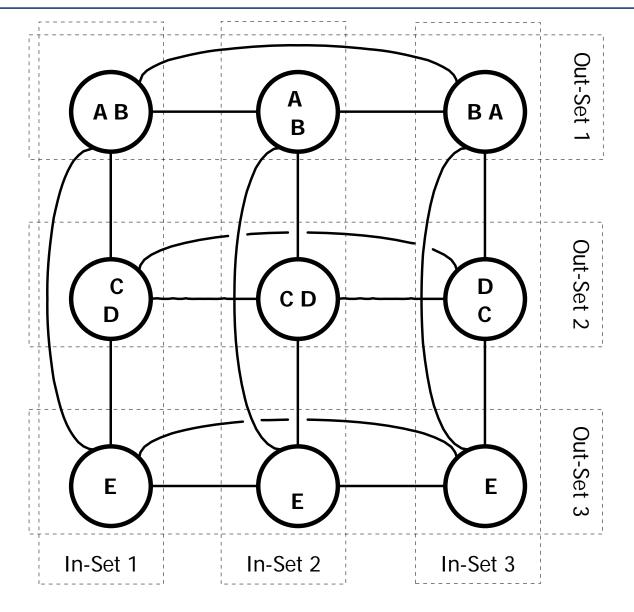
```
package matchingrelation;
import xmlspaces.XMLMatchable;
import java.io.*;
import org.w3c.dom.Document;
import de.gmd.ipsi.xql.*;
public class XQLMatch implements XMLMatchable{
  String query;
  public XQLMatch(String xqlQuery){
    query = xqlQuery;
  public boolean xmlMatch(Document xmlAsDoc){
    return XQL.match(query, xmlAsDoc);
```

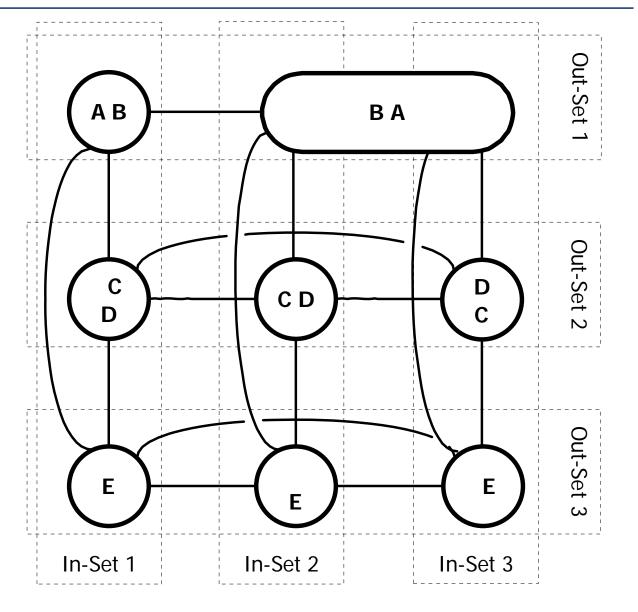
Distribution

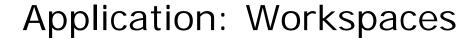


- Options known from work on Linda:
 - Centralized: One server holds the complete dataspace.
 - Distributed: All servers hold distinct subsets of the complete dataspace
 - Full replication: All servers hold consistent copies of the complete dataspace
 - Partial replication: Subsets of servers hold consistent copies of subsets of the dataspace
 - Hashing: Matching tuples and templates are stored at the same server selected by some hashing function
- XMLSpaces supports all schemas and is extensible

Distributed servers

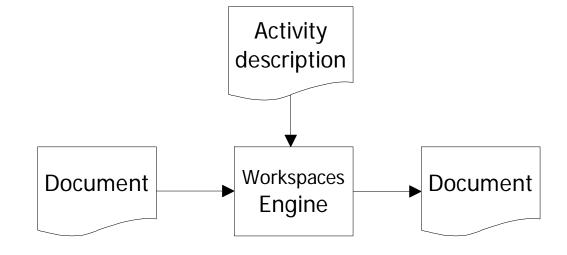

- Receiption tells node which peers to use
- Each peer is initially contacted by a RemoteTSSReceiption
- Further communication is by a RemoteTSSReceiver
- Distributor object encapsulates distribution schema

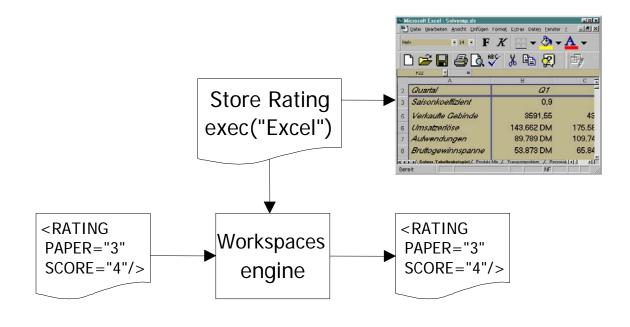

- Nodes in out-set contain replica
- Union of contents in nodes in in-set is whole content of space


- Simulated nodes to keep grid
- Protocols for join and leave of nodes
- Centralized, distributed and fully replicated schemes are special cases of partial replication

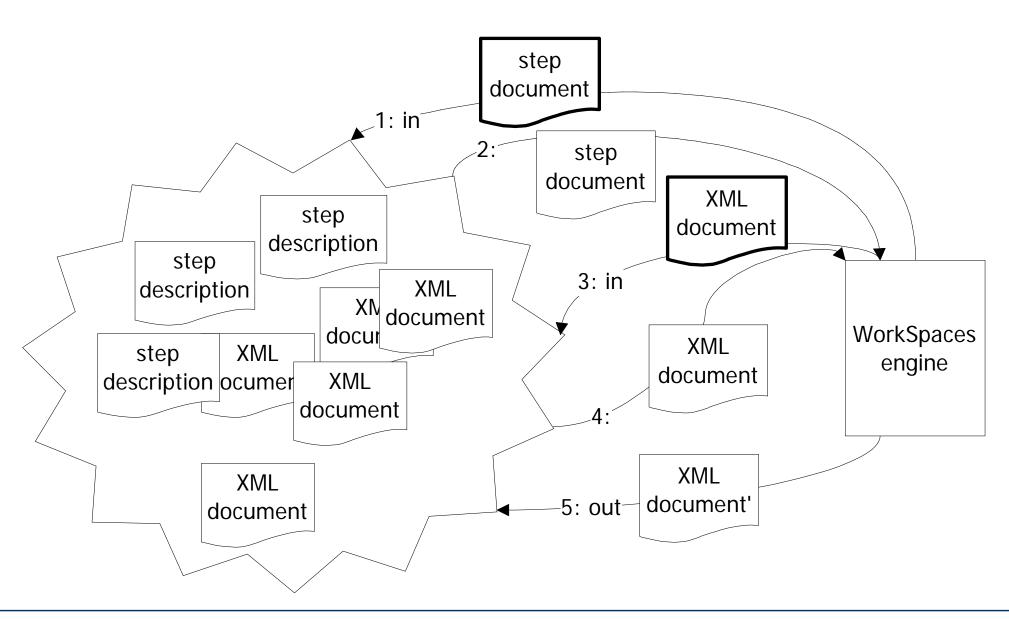
Implementation

- DOM level 1 as internal representation
- TSpaces for local spaces (source licence granted by IBM Almaden)
- Various XML software
- JVM based


- An XML/XSL based workflow system
- Workflow graph is split into single steps that are represented as XSL documents


Application: Workspaces

 Documents and worksteps as XML documents



 Workspaces engine is an extended XSL engine

XML access in Workspaces

Conclusion and outlook

- Using XML as tuple-fields adds necessary structure for data
- Relations on XML documents are manifold
- XMLSpaces = common communication format XML
 - + coordination language Linda
- + open set of matching relations
- + open set of distribution strategies

Agenten

Autonomie

- Die RPC-basierte Marssonde
 - Flugdatenübermittlung per RPC von der Erde
 - Ändert Kurs auf RPC Aufruf
 - Entscheidungen über Kursänderungen werden auf der Erde getroffen
- Unpraktikabel
 - Sehr lange Latenz
 - Entscheidungsfristen kleiner als Netzlatenz
 - Risiko der Fehlersemantik... Realer Absturz...
- Problem
 - Sonde ist nicht autonom in ihren Entscheidungen

- Agent ist
 - ein Rechnersystem, das eigenständig für einen Benutzer agiert
- Mehragentensystem ist
 - ein Rechnersystem, das aus mehrere Agenten besteht, die miteinander interagieren
- Agenten müssen
 - kooperieren
 - sich koordinieren
 - verhandeln

- Vorteile
 - Autonomie
 - Verschiebung der Sichtweise auf Systeme von der Berechnung zur Interaktion
 - Besseres Abbild realer Gesellschaften
- Nachteile
 - Unklare Realisierung
 - Unterscheidung zu
 - Verteilten Systemen (aber: Autonomie)
 - KI (aber: Verteiltheit und Realisierungsfrage)
 - Spieltheorie/Ökonomie (aber: Automatisierung)
 - Gesellschaftswissenschaften (aber: Informatiker)

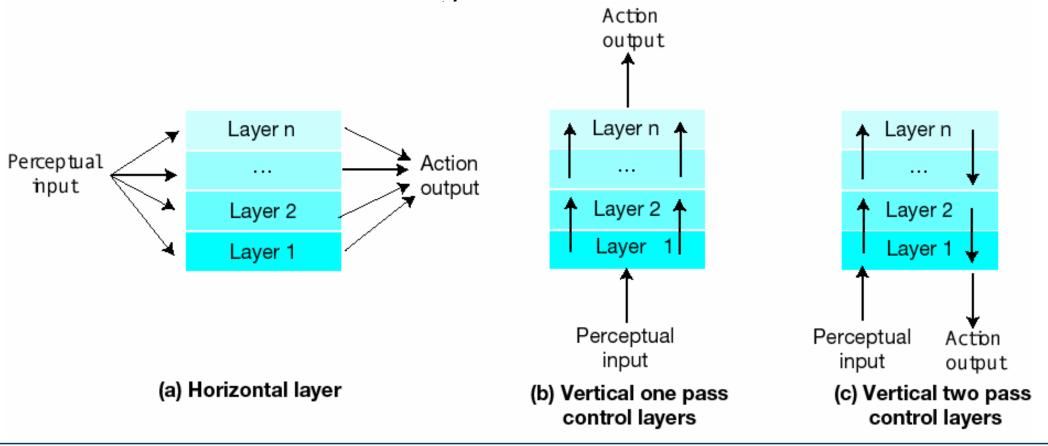
- Schwache Definition
 - Autonomie: Agent operiert ohne direkte Steuerung von außen und kontrolliert seine Aktionen selber
 - Responsiveness/Empfindlichkeit: Agent beobachtet Umgebung und reagiert auf Änderungen darin
 - Proaktiveness/Initiativ: Agent reagiert nicht nur, sondern wird selbständig zur Erreichung von Zielen aktiv
 - Sozial: Agent interagiert mit anderen zur Erreichung eigener und deren Ziele
- In der Regel mit Fokus auf Software-Agenten

- Starke Definition
 - Mobilität: Agenten bewegen sich in ienem elektronischen Netzwerk (siehe auch: Roboter)
 - Veracity/Aufrichtigkeit: Agenten geben nicht wissentlich falsche Informationen weiter
 - Rationalität: Agenten beschädigen nicht durch Aktionen ihre eigenen Ziele
 - Kooperativität: Agenten arbeiten mit (menschlichen)
 Auftraggebern zusammen und übernehmen deren Ziele
- Zieht Aspekte menschlichen Verhaltens ein
- ... Intelligent Agents, Smart Agents ...

Architekturen

- Deliberative (Abwägend) Architectures
- Annahme: Intelligente Aktivität durch
 - symbolische Muster zur Repräsentation von Probleme
 - Operationen darauf zur Lösungsgenerierung
 - Suche auf Mustern zur Auswahl von Lösungen
- Agent sollte symbolisches Modell seiner Welt haben
- Beliefs, Desire, Intentions (BDI) Agenten:
 - Jeweils Modelle explizit repräsentiert
 - Tief erforscht
 - Schlecht skalierbar

Architekturen



- Reactive Architectures
- Annahme: Intelligentes Verhalten durch Beobachung der Umgebung und Reaktion darauf
- Ohne interne Repräsentation
- Entscheidungen getroffen
 - mit wenig Informationen
 - einfachen Regeln (situativ)
 - in Echtzeit
- -> Autonome Roboter
- Hybrid Architectures
 - Kombination aus Deliberative/Reactive Architectures

Architekturen

- Layered (geschichtete) Architectures
- Agent besteht aus Subsysteme, die Problemteile verarbeiten
- Unterschiedliche Konfigurationen:

Implementierung

Kooperation

- Kooperative Interaktion: Agenten koordinieren ihre Aktionen. Koordination ist durch Programmierer vorgegeben
- Vertragsbasierte Kooperation: Absichten der Agenten stehen leicht in Konflikt. Koordination durch Marktmechanismen wie Auktionen
- Verhandlungsbasierte Kooperation: Verhandlungen zwischen Agenten, deren Ressourcenbedarf in Konflikt steht

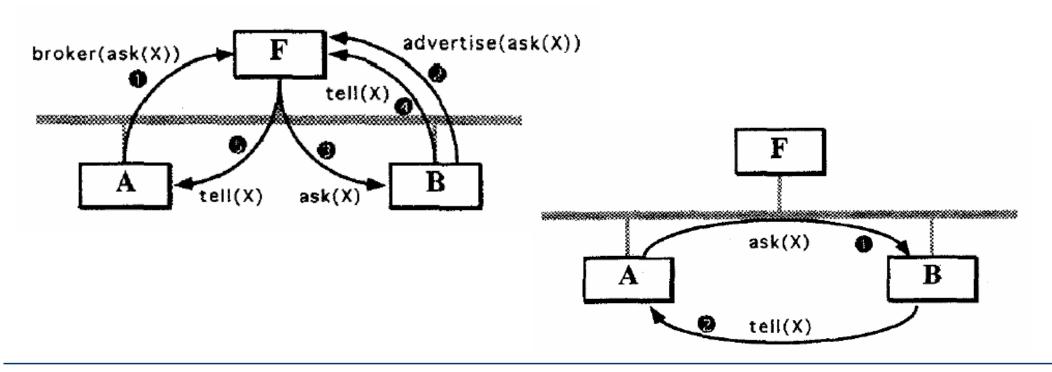
Rationalität

- Alleine: Agent handelt so, dass er seine Ziele erreicht
- In Gemeinschaft: Agent handelt so, dass der gemeinsame Nutzen größer ist als der gemeinsame Verlust bei einer anderen Aktion

Implementierung

- Kommunikation
 - Agenten müssen Wissen austauschen
 - Agent Communication Languages (ACL)
 - KQML: Sprache zur Äußerung von Kommunikationsakten
 - Auf Sprechakten basiert
 - Mitteilungen haben Typ
 - Definierte Semantik
 - KIF: Sprache zur Repräsentation von Wissen
 - Wie wird der semantische Inhalt der Mitteilung repräsentiert
 - FIPA ACL
 - FIPA Konsortium
 - Ontologien
 - Worüber wird geredet
 - Was sind die Konzepte der Anwendungsdomäne

KQML


(ask-all

:content "price(IBM, [?price, ?time])"

:receiver stock-server

: language standard-prolog

: ontology NYSE-TICKS)

Beispielsystem

- Zum Ausprobieren:
 JADE (Java Agent DEvelopment Framework)
- http://sharon.cselt.it/projects/jade/
- Java-basiert, FIPA kompatibel, Grafische Oberfläche

Zusammenfassung

Zusammenfassung

- 1. Schwächen des RPC-Konzepts
 - 1. Rollen, Transparenz, Fehler, Nebenläufigkeit
- 2. Koordinationssprachen
 - 1. Tuplespace
 - 2. Indirekt, anonym, zeitlich entkoppelt, Mehrparteieninteraktion, nebenläufig, verteilt
 - 3. XMLSpaces
- 3. Agenten
 - Autonomie
 - 2. ACL

Literatur

- Andrew S. Tanenbaum and Robbert van Renesse. A critique of the remote procedure call paradigm. In Research into Networks and Distributed Applications (EUTECO 88), ed., R. Speth. Elsevier Science Publishers, 1988, pp. 775-783.
- David Gelernter, Nicholas Carriero. Coordination languages and their significance. Communications of the ACM, Volume 35, Issue 2 (February 1992). Pages: 97 - 107
- Eric Freeman, Susanne Hupfer, Ken Arnold. JavaSpaces Principles, Patterns, and Practice. Addison-Wesley, 1999.
- Michael Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, 2002.
- Eleni Mangina. Review of Software Products for Multi-Agent Systems. AgentLink (Hrsg.). http://www.agentlink.org/resources/other-pubs.html
- Tim Finin, Richard Fritzson, Don McKay, Robin McEntire. KQML as an agent communication language. Proceedings of the third international conference on Information and knowledge management. 456 – 463. 1994.
- Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert Tolksdorf (Editors). Coordination of Internet Agents: Models, Technologies, and Applications. Springer Verlag, 2001. ISBN 3540416137.